API src

HyPetro - Automatisierte Echtzeit-Hyperspektral-Bildgebung und -analyse für die Erkennung betonschädlicher Bestandteile in Gesteinskörnungen, Teilvorhaben: Entwicklung einer intelligenten hybriden Erkennungsroutine für ein Hyperspektral-Analysesystem unter Verwendung tiefer neuronaler Netze

Description: Das Projekt "HyPetro - Automatisierte Echtzeit-Hyperspektral-Bildgebung und -analyse für die Erkennung betonschädlicher Bestandteile in Gesteinskörnungen, Teilvorhaben: Entwicklung einer intelligenten hybriden Erkennungsroutine für ein Hyperspektral-Analysesystem unter Verwendung tiefer neuronaler Netze" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Ilmenau, Fachgebiet für Qualitätssicherung und Industrielle Bildverarbeitung.Die Primärrohstoffindustrie benötigt schnellere Verfahren zur Beurteilung von Gesteinskörnungen und zur Vermeidung von Gesteinsarten mit Beton-schädlichen Eigenschaften, um eine vereinfachte und gleichzeitig abgesicherte Vergabe von Abbau-Lizenzen bei einer effizienteren Nutzung vorhandener Kieslagerstätten und Steinbrüche zu ermöglichen. Die damit verbundene deutliche Reduzierung von Betonschäden weist einen erheblichen volkswirtschaftlichen Nutzen auf. Das zu entwickelnde innovative Analyseverfahren zur Unterscheidung zwischen kritischen und unkritischen Gesteinskörnungen basiert im Kernstück auf einer intelligenten hybriden Erkennungsroutine unter Verwendung Neuronaler Netzwerkarchitekturen (Deep-Learning-Verfahren) sowie klassischer, auf innovativen Texturmerkmalen trainierter Machine-Learning-Algorithmen. Schwerpunkte sind die Entwicklung von innovativen algorithmischen Verfahren zur Bilderkennung hochkomplexer, nichtlinearer Erkennungsprobleme im aus VIS-Farbkamerabildinformationen und NIR-Hyperspektralbildinformationen bestehenden Hybrid-Datenkubus (Big-Data), die Entwicklung einer optischen Bildvorverarbeitung für die Anwendung eines Convolutional Neuronal Networks (CNN), die Implementierung einer intelligenten Sensordatenfusion (VIS-3CCD-Sensor- und NIR-Hyperspektral-Sensordaten) sowie die Entwicklung innovativer Visualisierungs- und Darstellungsverfahren für die gewonnenen hybriden Bildsignale zur Nutzbarmachung, besseren Visualisierung und erfolgreichen Datenanalyse für die Qualitätssicherung.

Types:
SupportProgram

Origins: /Bund/UBA/UFORDAT

Tags: Beton ? Bildverarbeitung ? Steinbruch ? Qualitätsmanagement ? Analyseverfahren ? Berechnungsverfahren ? Bewertungsverfahren ? Statistische Analyse ? Gestein ? Netz ? Vergabeverfahren ? Visualisierung [Umweltinformation] ?

Region: Mühlhausen/Thüringen

Bounding boxes: 10.453° .. 10.453° x 51.2217° .. 51.2217°

Marker

License: cc-by-nc-nd/4.0

Language: Deutsch

Organisations

Time ranges: 2020-09-01 - 2023-08-31

Status

Quality score

Accessed 1 times.