API src

Neutronensimulation; Quantitative Untersuchung der Auswirkung verschiedener Wasserspeicher auf das CRNS-Signal

Description: Das Projekt "Neutronensimulation; Quantitative Untersuchung der Auswirkung verschiedener Wasserspeicher auf das CRNS-Signal" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Physikalisches Institut durchgeführt. Die Interpretation der Messergebnisse eines Cosmic Ray Neutron Sensing (CRNS)-Detektors benötigt ein tiefgreifendes Verständnis der zugrunde liegenden physikalischen Prozesse. In diesem Zusammenhang haben sich Monte-Carlo-basierte Vielteilchensimulationen, z.B. MCNPX, als sehr hilfreich erwiesen. Die allgemein akzeptierten Transferfunktionen um aus einer Neutronendichte die Bodenfeuchte zu berechnen, wurden semi-empirisch für idealisierte Bedingungen ermittelt. Die Effekte von Bodenbeschaffenheit, Vegetation und Schneebeschaffenheit werden teilweise durch Hinzufügen phänomenologisch motivierter Parameter berücksichtigt. Allerdings gibt es dazu bisher keine tiefergreifenden theoretischen Untersuchungen und Validierungen. Wir haben daher das Monte-Carlo Werkzeug namens URANOS entwickelt, welches speziell auf die Anforderungen der Umweltphysik und CRNS zugeschnitten wurde. Der benötigte Rechenaufwand konnte durch effektive, problemspezifische Methoden im Vergleich zu herkömmlichen Vielteilchensimulationen stark reduziert werden. In den letzten Jahren konnten wir damit das Verständnis der Signal-Reichweite-Beziehung deutlich verbessern und eine analytische Beschreibung unter Berücksichtigung von Umweltfaktoren herleiten. Das Hauptziel dieses Teilprojektes ist es, die Änderung des CRNS-Signals, hervorgerufen durch verschiedene Umweltfaktoren und Bodenstrukturen innerhalb des Einflussbereichs, zu verstehen. Dabei handelt es sich um folgende Faktoren: Bodenbeschaffenheit, vertikale Wasserverteilung in Boden und Luft, Landnutzung, Schneebedeckung, Bewuchs, und durch solches abgefangenes Wasser bei Regenfällen sowie generelle räumliche Inhomogenität. Um dies zu erreichen werden wir versuchen, Korrekturfunktion basierend auf physikalischen Modellen zu verwenden, um die wachsende Anzahl von empirischen und standortspezifischen Näherungen überflüssig zu machen. Zusätzlich werden die Neutronensimulationen benötigt, um den Einfluss verschiedener Detektoranordnungen zu untersuchen. Unverzichtbar sind die Neutronensimulationen für die Verbesserung bezüglich energieabhängiger Gewichtung und Weiterentwicklung der Neutronendetektoren sowie energiebereichsspezifischer Abschirmung. Des Weiteren werden sie für konzeptionelle Untersuchungen des Einflusses der Vegetation und weiterer Wasserspeicher benötigt. Für die Großversuchskampagne werden wir 3D-Modelle der Sensor-Standorte erstellen und die simulierten Messsignale den Arbeitsbereichen Großflächiges CRNS-Netzwerk und Mobiles CRNS zu Verfügung stellen. Schließlich können zusammen mit den Arbeitsbereichen Hydrologische Modellierung und Grundwasserneubildung räumlich-zeitliche Modellrechnungen durchgeführt werden um komplexe Zusammenhänge im Wasserhaushalt der Umwelt zu verstehen. Für die Weiterentwicklung des URANOS-Programms für den Einsatz im CRNS-Bereich benötigen wir die Vorschläge und Rückmeldungen der Nutzer.

Types:
SupportProgram

Origin: /Bund/UBA/UFORDAT

Tags: Heidelberg ? Rochen ? Grundwasserneubildung ? Vegetation ? Sensor ? Abschirmung ? Bodenstruktur ? Hydrogeologie ? Bodenqualität ? Flächennutzung ? Hydrochemie ? Limnologie ? Modellversuch ? Physikalisches Modell ? Regen ? Siedlungswasserwirtschaft ? Wasserspeicher ? Wasserversorgung ? Bodenfeuchte ? Modellierung ? Hydrologie ? Kenngröße ? Ökologischer Faktor ? Wasserhaushalt ? Physikalischer Vorgang ? Modellrechnung ? Integrierte Wasser-Ressourcen Bewirtschaftung ? Neutronen ? Validierung ? Werkzeug ?

Region: Baden-Württemberg

Bounding boxes: 9° .. 9° x 48.5° .. 48.5°

License: cc-by-nc-nd/4.0

Language: Deutsch

Organisations

Time ranges: 2018-01-01 - 2025-03-31

Alternatives

Resources

Status

Quality score

Accessed 1 times.