API src

Upwind: Development of Improved Wind Turbine Noise Prediction Tools for Low Noise Airfoil Design

Description: Das Projekt "Upwind: Development of Improved Wind Turbine Noise Prediction Tools for Low Noise Airfoil Design" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Aerodynamik und Gasdynamik durchgeführt. The noise regulations of various countries urge wind turbine manufacturers to reduce the aerodynamical noise emission of their turbines. To reduce the greenhouse gas emission, wind energy has been put in a very front position. EWEA estimates 12percent of worlds energy may come from wind turbines by the year 2020 (approx. 1,260,000 MW). This means wider deployment of wind turbines, at lower wind speed sites i.e. close to people & transmission lines. To reduce the transmission cost between production site and customer, onshore installations are still a cheaper solution. One of the biggest barriers for developing onshore turbines is the noise which has a negative impact on people's daily life. Thus, the goal of developing onshore wind turbines is to design silent wind turbines and silent wind farms and at the same time have a good aerodynamic efficiency. Noise emitted from an operating wind turbine can be divided into two parts, mechanical noise and flow induced noise. Mechanical noise can sufficiently be reduced by conventional engineering approaches but flow-induced noise is more complex and need more focus. The noise mechanisms associated with flow-induced noise emission have different sources. These are, inflow turbulence noise, tip noise, laminar boundary layer separation noise, blunt trailing-edge noise (BTE) and for turbulent boundary-layer trailing-edge interaction noise (TBL-TE). Acoustic field measurements within the European research project SIROCCO showed that the TBL-TE noise is the most dominant noise mechanism for modern wind turbines. Thus, accurate prediction and reduction of the TBL-TE noise is the main focus of the acoustics airfoil design methods for wind turbine rotor blade. For developing 'silent' airfoils, a routinely design fast, less expensive and accurate prediction methodology is desired. In this respect, simplified theoretical model would be the first candidate, and therefore the main goal is development of an accurate and efficient noise prediction model for the low noise wind turbine blade design.

Types:

SupportProgram

Origin: /Bund/UBA/UFORDAT

Tags: Stuttgart ? Windgeschwindigkeit ? Aerodynamik ? Lärmminderung ? Lärmschutzwall ? Lärmschutzwand ? Zufluss ? Schall 03 ? Treibhausgasemission ? Akustik ? Lärmemission ? Lärmmessung ? Pflanzensamen ? Skigebiet ? Strömungstechnik ? Gewächshaus ? Windenergie ? Windkraftanlage ? Wind ? Main ? Deponie ? Landwirtschaftlicher Betrieb ? Regulierung ? Strömungsgeräusch ? Prognose ? Gasförmiger Stoff ? Windpark ? Wirkung ? Ackerland ? Emission ? Energie ? Lärm ? Maschinenbau ? Prognosemodell ? Standortwahl ? Strömungsmechanik ? Wirkungsgrad ? Messung ? Windrotor ? Abscheidung ? Forschungsprojekt ? Bedarf ? Forschung ? Grenzschicht ? Landwirtschaft ? Rotor ? Turbulenz ? Planung ? Anlage ? Kosten ? Onshore-Windkraftanlage ? Transmission ? Produktion ? Onshore ? BEZUG ? GROESST ? MECHANISMEN ? GUETER ? METHODE ? METHODIK ? Mittel ? Ortsbestimmung ? ENTWICKLUNG ? PROJEKT ? HINDERNIS ? Rotorblatt ? EINFUEHRUNG ? EIN ? STILLGELEGT ? TEIL ? Betriebsvorschrift ? Turbomaschine ? VERRINGERUNG ? Werkzeug ? INGENIEURWESEN ? Fluss [Bewegung] ? KONVENTIONELL ? LAENDER ? LAND ? GEMISCHT ? LOESUNG ? Lärmprognose ?

Region: Baden-Württemberg

Bounding box: 9° .. 9° x 48.5° .. 48.5°

License: cc-by-nc-nd/4.0

Language: Deutsch

Organisations

Time ranges: 2006-03-01 - 2011-03-01

Alternatives

Resources

Status

Quality score

Accessed 1 times.