API src

Untersuchung des biochemischen Mechanismus des Sulfonamidabbaus in Abwassser und die Rolle der ipso-Substitution

Description: Das Projekt "Untersuchung des biochemischen Mechanismus des Sulfonamidabbaus in Abwassser und die Rolle der ipso-Substitution" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Engler-Bunte-Institut, Lehrstuhl für Wasserchemie und Wassertechnologie durchgeführt. Sulfonamid-Antibiotika werden nur unzureichend in Kläranlagen abgebaut und können daher ubiquitär in der aquatischen Umwelt nachgewiesen werden. Es konnte gezeigt werden, dass ständige Exposition von Mikroorganismen, auch bei nicht-hemmenden Konzentrationen, die Ausbreitung von Antibiotika-Resistenzen fördert, was Anlass zur Sorge gibt im Hinblick auf die steigende Zahl von Berichten über multiresistente Erreger. Microbacterium sp. Stamm BR1 wurde aus einer Anreicherungskultur aus Belebtschlamm isoliert. Dieser Stamm ist in der Lage Sulfonamid-Antibiotika als Kohlenstoff- und Energiequelle zu nutzen. In diesem Stamm wurden die kodierten Gene, die für den Sulfonamidabbau verantwortlich sind, identifiziert. Es konnte gezeigt werden, das eine FMN-abhängige Monooxygenase, kodiert durch ein sadA Gen, die ipso-Substitution von Sulfonamiden katalysiert, was den Abbau zu 4-benzoquinone-imin, Sulfite und dem zuvor an der Sulfogruppe verbliebenen Rest einleitet. Während 4-Benzochinon-imin als Kohlenstoff- und Energiequelle dient, verbleibt der meist heterozyklische Rest als Dead-End Metabolit in den Kulturüberständen. In dem vorgeschlagenen Projekt soll der Zusammenhang zwischen dem Entstehen der identifizierten Dead-End Metabolite und dem biologischen Abbau von Sulfonamiden untersucht werden. Gleichzeitig soll untersucht werden, ob die Präsenz von homologen Bakteriengenen in ausgesuchten Kläranlagen der Abbauaktivität von Sulfonamiden zugeordnet werden kann. Dazu sollen Genomsequenzen aus weiteren sulfonamide-abbauenden Bakterienkulturen isoliert und bezüglich des Vorhandensein von sadA Homologen untersucht werden. Aus den Homologsequenzen soll eine Consensus-Sequenz berechnet werden, die als Basis für PCR Primer dient, um speziell sadA Homologe aus Belebtschlammkulturen zu vervielfachen und zu quantifizieren. Flankierende Sequenzen dieser Homologe werden ebenfalls analysiert hinsichtlich Gen-Clustern, die dem in Microbacterium sp. Stamm BR1 ähneln. Eliminationsraten von Sulfonamiden in Kläranlagen sollen über Massenbilanzen aus Zulauf und Ablauf bestimmt werden. Zusätzlich soll der Belebtschlamm bezüglich seines Abbaupotentials in Experimenten mit zugegebenen Sulfamethoxazole getestet werden. Der Abbau von Sulfonamiden in Reinkulturen bei Unterschiedlichen Nährstoffbedingungen soll Aufschluss über Grenzwerte für die Up- oder Down-Regulierung von Genen geben, die an der ipso-substitution von Sulfonamiden beteiligt sind. Das übergeordnete Ziel ist es, an die Ergebnisse des vom SNF geförderten vorangegangen Projektes anzuknüpfen, um die Abbauwege von Sulfonamiden während der Abwasserbehandlung besser zu verstehen. Die Ergebnisse und Arbeiten in diesem Projekt ermöglichen eine bessere Bewertung diesen Sulfonamidabbaus sowie das Verständnis der Rolle von FNM-abhängigen Monooxygenasen, die bereits im Vorläuferprojekt isoliert wurden.

Types:

SupportProgram

Origin: /Bund/UBA/UFORDAT

Tags: Antibiotikum ? Gen ? Sulfonamid ? Antibiotikaresistenz ? Belebtschlamm ? Kläranlagenablauf ? Sulfit ? Heterozyklen ? Kläranlage ? Abwasserbehandlung ? Hydrogeologie ? Katalyse ? Regulierung ? Stoffwechselprodukt ? Gelöster organischer Kohlenstoff ? Biologischer Abbau ? Energiequelle ? Exposition ? Hydrochemie ? Limnologie ? Monokultur ? Aquatisches Ökosystem ? Siedlungswasserwirtschaft ? Mikroorganismen ? Multiresistenter Erreger ? Grenzwert ? Hydrologie ? Integrierte Wasser-Ressourcen Bewirtschaftung ?

Region: Baden-Württemberg

Bounding box: 9° .. 9° x 48.5° .. 48.5°

License: cc-by-nc-nd/4.0

Language: Deutsch

Organisations

Time ranges: 2015-01-01 - 2018-12-31

Alternatives

Resources

Status

Quality score

Accessed 1 times.