Description: Das Projekt "Nanostructured polymer layers for interface-enhanced organic solar cells (InterCell)" wird vom Umweltbundesamt gefördert und von Eidgenössische Materialprüfungs- und Forschungsanstalt durchgeführt. Thin films of blends of organic semiconducting materials are increasingly used as active layers in light-emitting diodes and photovoltaic devices. The arrangement of the components at the nanometer level is the key to device perfomance, and the challenge is to optimize charge generation and transport at the same time. In this project, we used two fundamental structure formation mechanisms to control the thin-film morphology in organic photovoltaic devices. In both cases we used molecular self-assembly processes and a simple large-area compatible coating process from solution for film fabrication. Thereby, we preserve the low-cost potential that organic materials inherently offer for the fabrication of optoelectronic devices, as opposed to the various top-down printing and direct writing methods available to create and transfer structures on the sub-100 nm length scale. In one example, surface-directed spinodal demixing of an active/guest polymer mixture during spin coating was used to fabricate a vertically segregated bilayer film with a rough interface. Using a selective solvent, the guest polymer was then removed and the remaining film covered with a second active component. Bulk spinodal decomposition is the structure-determining process for large guest polymer weights and leads to a rather coarse interface structure. Only when surface segregation favours phase separation into a bilayer, submicron interface structures developed. With use of polystyrene as guest polymer, a poly(p-phenylenevinylene) derivative as electron donor and the acceptor C60, this resulted in much-improved solar cell performance, with external power efficiencies more than 3 times higher than those reported for that particular material combination so far. The second approach specifically relates to the patterning of cyanine dyes. Cyanines are charged cationic molecules and are accompanied by a negative counter ion. Cyanines intrinsically have properties which are useful for high-performing solar cells, but little is known about the nanoscale self-organization properties of molecular ionic blends. We recently found that thin films spin-coated from a cyanine dye/PCBM (a C60 derivative) mixture show small-scale phase-separated morphologies. The mechanism leading to these morphologies does not occur by phase separation alone, but by destabilization of interfaces in a transient bilayer that forms during spin coating. Both layers destabilize via a process called liquid-liquid dewetting. We believe that electrostatic forces drive the destabilization of the films. We found that liquid-liquid dewetting results in a large variety of phase morphologies, with tunable dimensions well below 50 nm. Fine tuning of the morphology can be achieved by material independent parameters such as film thickness and annealing temperature. Solar cells were fabricated and performance figures were related to the internal film structure. (abridged text)
Types:
SupportProgram
Origin: /Bund/UBA/UFORDAT
Tags: Leuchtdiode ? Naturwerkstoff ? Polystyrol ? Irrgast ? Stoffliche Verwertung ? Morphologie ? Drucker ? Farbstoff ? Lösungsmittel ? Photovoltaik ? Pflanzensamen ? Solarzelle ? Brunnen ? Anstrich ? Generationsdauer ? Altgerät ? Polymer ? Anfechtung ? Temperatur ? Flüssiger Stoff ? Mischkunststoff ? Gebäude ? Gebühr ? Abscheidung ? Effizienz ? Stoffgemisch ? Zelle ? Energie ? Verwitterung ? Ionen ? Kenngröße ? Abdeckung ? Transportkosten ? Forschungseinrichtung ? polymer blend ? Abschreibung ? Altstoff ? Buchgrundstück ? Kostenstruktur ? Nanostrukturierung ? polymer demixing ? liquid-liquid dewetting ? organic solar cell ?
License: cc-by-nc-nd/4.0
Language: Deutsch
Time ranges: 2006-06-01 - 2008-07-31
Accessed 1 times.