API src

Herstellung und Transport von Nanopartikeln mittels Elektrospray

Description: Das Projekt "Herstellung und Transport von Nanopartikeln mittels Elektrospray" wird vom Umweltbundesamt gefördert und von Universität Duisburg, Fachbereich 9 Elektrotechnik, Fachgebiet Prozess- und Aerosolmesstechnik durchgeführt. Nanostructured materials are receiving increasingly interest as building blocks for nanotechnological applications, such as nanoelectronics, quantum electronics, sensortechnology, non-linear optics and solar technology. A layer of semiconducting nanoparticles smaller than 20 nm on a well-difined surface will have properties which differ from bulk material, for instance a modified bandgap diode and specific opto-electronic properties. The aim of the research projects is to investigate the potential of the spraying process in the production of semiconducting nanoparticles in combination with the particle transport and a well-defined deposition. Particle are produced using an aerosol generator based on the principle of electrostatic spraying. This technique is capable of producing monodisperse particles in high concentrations. In additon, this spraying technique provides a very efficient way of charging liquid particles. Since the droplets are highly charged due to the production process, they are dispersed by repulsive forces and do not coagulate, thus keeping the particle size constant. Electrostatic spraying can be observed by means of very simple apparatus. A potential difference of a few thousands volts between a plate and a capillary containing a liquid has to be supplied. A liquid droplet leaving the capillary will be deformed due to the electrical field, forming a liquid cone emitting highly-charged droplets at the tip. Different methods can be applied to neutralize these droplets for e.g. particle size measurements. In ambient air, such a system is capable of furnishing droplets varying in size, depending on the conditions, from the millimeter to the submicron range. Many parameters are involved in this spraying process and, depending on their values, different modes of operation are obtained which correspond to the production of aerosols having different characteristics. Droplets of uniform size have been obtained regularly using 'cone-jet' and 'silver-bullet' modes. Different operation modes are observed using a CCD camera and the particle size distribution is measured using a DMPS system and AFM. Also the angle of the meniscus and the spray are measured using a digital image analysis program. The results of our numerical calculations will be compared with these results.

Types:

SupportProgram

Origin: /Bund/UBA/UFORDAT

Tags: Duisburg ? Blech ? Elektronik ? Sensor ? Außenluft ? Optik ? Aerosol ? Deponie ? Elektrotechnik ? Flockung ? Partikelgrößenverteilung ? Solartechnik ? Verfahrenskombination ? Verfahrensparameter ? Numerisches Verfahren ? Deposition ? Schüttgut ? Nanopartikel ? Forschungsprojekt ? Kenngröße ? Partikel ? Anlagenbetrieb ? AFM ? Aerosolgenerator ? CCD-Kamera ? DPMS-System ? Elektrospray ? Nanometer-Technologie ? Nanometerpartikel ? Sensortechnologie ?

Region: Nordrhein-Westfalen

Bounding box: 6.76339° .. 6.76339° x 51.21895° .. 51.21895°

License: cc-by-nc-nd/4.0

Language: Deutsch

Organisations

Time ranges: 1995-01-01 - 1997-12-31

Alternatives

Status

Quality score

Accessed 1 times.