API src

Super high efficiency Cu(In,Ga)Se2 thin-film solar cells approaching 25% (Sharc25)

Description: Das Projekt "Super high efficiency Cu(In,Ga)Se2 thin-film solar cells approaching 25% (Sharc25)" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Prime objective of the Sharc25 project is to develop super-high efficiency Cu(In,Ga)Se2 (CIGS) solar cells for next generation of cost-beneficial solar module technology with the world leading expertise establishing the new benchmarks of global excellence. The project partners ZSW and EMPA hold the current CIGS solar cell efficiency world records of 21.7% on glass and 20.4% on polymer film, achieved by using high (approximately 650 centigrade) and low (approximately 450 centigrade) temperature CIGS deposition, respectively. Both have developed new processing concepts which open new prospects for further breakthroughs leading to paradigm shift for increased performance of solar cells approaching to the practically achievable theoretical limits. In this way the costs for industrial solar module production less than 0.35 Euro/Wp and installed systems less than 0.60 Euro/Wp can be achieved, along with a reduced Capex less than 0.75 Euro/Wp for factories of greater than 100 MW production capacity, with further scopes for cost reductions through production ramp-up. In this project the performance of single junction CIGS solar cells will be pushed from approximately 21% towards 25% by a consortium with multidisciplinary expertise. The key limiting factors in state-of-the-art CIGS solar cells are the non-radiative recombination and light absorption losses. Novel concepts will overcome major recombination losses: combinations of increased carrier life time in CIGS with emitter point contacts, engineered grain boundaries for active carrier collection, shift of absorber energy bandgap, and bandgap grading for increased tolerance of potential fluctuations. Innovative approaches will be applied for light management to increase the optical path length in the CIGS absorber and combine novel emitter, front contact, and anti-reflection concepts for higher photon injection into the absorber. Concepts of enhanced cell efficiency will be applied for achieving sub-module efficiencies of greater than 20% and industrial implementation strategies will be proposed for the benefit of European industries.

Types:

SupportProgram

Origin: /Bund/UBA/UFORDAT

Tags: Kraftwerksleistung ? Baden-Württemberg ? Kupfer ? Dünnschichtsolarzelle ? Absorber ? Gallium ? Polymer ? Selen ? Solarenergie ? Solarzelle ? Indium ? Solartechnik ? Temperatur ? Industrie ? Licht ? Stromeffizienz ? Prospektion ? Reflexion ? Industrieproduktion ? Stand der Technik ? Wirkungsgrad ? Deposition ? Industrieanlage ? Investitionskosten ? Energiekonzept ? Kostensenkung ? Benchmarking ? Gutachten ? Effizienzsteigerung ? H2020-EU.3.3.2.1. - Develop the full potential of wind energy ? Solarmodul ? Ablagerung ? Haltbarkeit ?

Region: Baden-Württemberg

Bounding box: 9° .. 9° x 48.5° .. 48.5°

License: cc-by-nc-nd/4.0

Language: Deutsch

Organisations

Time ranges: 2015-05-01 - 2018-10-31

Alternatives

Status

Quality score

Accessed 1 times.