Description: Das Projekt "Dünnschichtsolartechnologien der Zukunft - SOLAMO" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Das Projekt SOLAMO hat zum Ziel, die beiden derzeit attraktivsten Dünnschichtsolarzellentypen basierend auf Cu(In,Ga)Se2 (CIGS) und Perowskiten parallel zueinander weiterzuentwickeln, so dass sie eines Tages in einer Tandemstruktur zusammengeführt werden können. CIGS: Die bereits im letzten Berichtszeitraum bestellte CIGS-Vakuumanlage wurde ausgeliefert, aufgebaut und abgenommen. Alle geforderten Spezifikationen (z.B. Basisdruck) konnten eingehalten werden oder waren noch besser als gefordert. Nach der Inbetriebnahme konnten auf Anhieb bereits relativ gute Absorber abgeschieden werden. Bei einer CIGS- Niedertemperaturabscheidung mit einer nominellen Substrattemperatur von 380 Grad Celsius wurden auf Polymerfolie (Polyimid) CIGS-Schichten in einem 3-Stufenprozess abgeschieden, die nach Aufbringen aller anderen Schichten zu Zellwirkungsgraden von bis zu 14,5 % führten. Auf Glassubstrat konnte im Niedertemperatur-CIGS-Prozess (420 Grad Celsius) sogar ein Wirkungsgrad von 17,2 % erreicht werden. Bei höheren Substrattemperaturen (500 Grad Celsius) lag der maximale Wirkungsgrad auf Glas bei 17,7 %. Der Wirkungsgrad ist dabei nicht direkt mit der Substrattemperatur korreliert, sondern entsteht durch eine komplexe Zusammenwirkung von Natrium- bzw. Kaliumdotierung, Interdiffusion der einzelnen Elemente (Cu, In, Ga, Se) und dem über der Schichtdicke eingebauten Gallium-Zusammensetzungsgradienten. In ersten Niedertemperatur-Versuchen bei 400 Grad Celsius auf Polymerfolie wurde zur Erhöhung der Abscheidegeschwindigkeit die Kupfer-Aufdampfrate in der zweiten Beschichtungsstufe erfolgreich verdoppelt, ohne Einbußen beim Zellwirkungsgrad zu erleiden. Perowskite: Perowskitsolarzellen wurden weiterhin im Standard- und invertierten Aufbau in opaker und semitransparenter Konfiguration untersucht. Im Standard-Aufbau konnte durch die Verwendung von PCBM und Al2O3 Nanopartikeln die Beschichtung verbessert und die unerwünschte Hysterese reduziert werden. Im invertierten Aufbau wurden fast hysteresefreie gut reproduzierbare Effizienzen von ca. 15 % erzielt. Um Kosten zu sparen, wurde versucht, den bisher thermisch verdampften Silber- Rückkontakt durch gesputtertes Aluminium zu ersetzen. Unter Verwendung eines Temperschrittes konnten Wirkungsgrade größer 10 % erreicht werden. Für semitransparente Perowskitzellen wurde als semitransparenter Frontkontakt Indium- Zink-Oxid (IZO) sowohl im Standard als auch im invertierten Aufbau getestet. In beiden Architekturen wurden Wirkungsgrade größer 13 % erzielt. Gleichzeitig blieben 70 % Transmission im Wellenlängenbereich größer als 775 nm für die Nutzung im Tandemverbund mit einer möglichen Subzelle aus CIGS oder Silizium erhalten. Erste Glas-zu-Glas Verkapselungstests zeigten, dass auch nach 9 Monaten Lagerung im Dunkeln noch größer als 12 % Wirkungsgrad (frische Probe 14,9 %) erreicht werden können (entspricht einer relativen Degradation von 18 %). (Text gekürzt)
Types:
SupportProgram
Origin: /Bund/UBA/UFORDAT
Tags: Aluminiumoxid ? Glas ? Baden-Württemberg ? Aluminium ? Kalium ? Natrium ? Substrat ? Kupfer ? Dünnschichtsolarzelle ? Material ? Absorber ? Gallium ? Selen ? Silizium ? Temperaturabhängigkeit ? Indium ? Architektur ? Chemische Zusammensetzung ? Kunststofffolie ? Vakuumtechnik ? Verfahrensoptimierung ? Beschichtung ? Nanopartikel ? Umweltforschung ? Ersatzstoff ? Vergleichsanalyse ? Wirkungsgrad ? Abscheidung ? Produktionstechnik ? Diffusion ? Abbau ? Halbleiter ? Effizienzsteigerung ? Transmission ? Dünnschichtmodul [Solarzelle] ? Polyimid ? Hybridsolarzelle ? Indiumzinnoxid ? Anlagentechnik ? PCBM ? Perowskitsolarzelle ?
Region: Baden-Württemberg
Bounding box: 9° .. 9° x 48.5° .. 48.5°
License: cc-by-nc-nd/4.0
Language: Deutsch
Time ranges: 2016-02-14 - 2019-11-29
Webseite zum Förderprojekt
https://pudi.lubw.de/detailseite/-/publication/10117-SOLAMO.pdf (Webseite)Accessed 1 times.