Description: Das Projekt "Signalverarbeitung fuer optische Partikelzaehler" wird vom Umweltbundesamt gefördert und von Universität Duisburg, Fachbereich 9 Elektrotechnik, Fachgebiet Prozess- und Aerosolmesstechnik durchgeführt. Optical particle counters (OPC) allow the determination of the particle number concentration and the size distribution. Instruments of different design are commercially available. One of the most important application areas of OPCs is clean technology. The development in clean technology is characterized by a drastic reduction in the allowed number concentration and the critical particle size which determines the lower size detection limit. With decreasing number concentration and decreasing lower detection limit the problem of false signals becomes more and more important. In the past a lot of effort has been put in redesigning the sensor of OPCs resulting in improved instrument behavior. Less effort has been put in improving the signal processing leading to a better SNR. Depending on the trigger level at a low SNR the particles might not be detected or the noise might cause false counts. The detection limit as well as the number of false pulses can be lowered by increasing the SNR. A higher amplification of the signal, thought as a possible solution, reduces the band width of the amplifier, which limits the flow rate. An additional effect caused by higher amplification may be that the noise level increases. If a flow false count rate is very important, the trigger level for detection has to be increased causing the instrument to become less sensitive. In this case the smallest detectable particle size increases. In this project a solution is worked out for optimizing the SNR for given OPCs. With the help of signal theory a correlation receiver was developed, which supplies a maximum SNR at the output. This receiver was realized in digital technology. It permits the on-line filtration of the particle signals for any commercial OPC. The results show a clear improvement in the SNR, which however, depends on the individual OPC. For a clean room monitor a gain of g gleich 2.06 gleich 6.28 dB was achieved, which means a reduction of the lower detection limit from 500 nm to a theoretical 421 nm with a constant false count rate. But the experiments have shown that it is possible to measure even 380 nm latex particles with security. With an unchanged lower detection limit false countings can be excluded with a security of more than plus minus 6 minus. On the whole it has been shown that in the field of optical particle measurement technology it is still absolutely possible to achieve considerable improvements and more research in the future is needed.
Types:
SupportProgram
Origin: /Bund/UBA/UFORDAT
Tags: Duisburg ? Sensor ? Partikelmesstechnik ? Elektrotechnik ? Lärmpegel ? Partikelgrößenverteilung ? Partikelanzahl ? Bestimmungsmethode ? Fließgeschwindigkeit ? Zukunftsforschung ? Größenverteilung ? Messverfahren ? Nachweisgrenze ? Partikel ? Umweltfreundliche Technologie ? Digitale Technologien ? Messgenauigkeit ? Nachweisbarkeit ? OPC ? Optischer-Partikelzaehler ? SNR ? Signal-Rausch-Verhaeltnis ? Signalverarbeitung ? Teilchenzahlbestimmung ?
Region: Nordrhein-Westfalen
Bounding box: 6.76339° .. 6.76339° x 51.21895° .. 51.21895°
License: cc-by-nc-nd/4.0
Language: Deutsch
Time ranges: 1994-01-01 - 2001-12-31
Accessed 1 times.