Description: Das Projekt "Flywheel energy storage for wind power generation" wird vom Umweltbundesamt gefördert und von Schaltanlagen-Elektronik-Geräte GmbH & Co. KG durchgeführt. General Information: With the ongoing attempt of the European Commission to reduce CO2 emission and protection of the environment, renewable energies will become more and more important. It is not unlikely that renewables will supply 20 - 50 per cent of the global energy demand in the middle of the next century. Integration of such a large amount of renewable energy in the current grid will however cause several problems due to the irregular output. The more remote the point of connection is from the source to the low voltage grid, the greater the disturbance in the network caused by these fluctuations. Modern turbines use the flywheel effect of the rotor to avoid the sudden large step-changes in output to the local network. More efficient use of the generated power can be made if an energy storage device is used. Photovoltaic cells present an even larger problem due to the larger and more frequent fluctuations in output. A recent study showed that increasing the share of photovoltaic energy above 2.2 per cent would present problems to the Dutch grid. Energy storage combined with renewables would increase the 'firmness' of the renewables supply and would decrease the need to connect them to a strong high voltage grid. The energy storage device could act as a power quality improvement device, importing power of whatever quality and exporting power of assured quality into the grid. Electromechanical energy storage in flywheels is a very good option for short term storage of renewable energies such as mentioned above. The benefits of flywheels over batteries are that flywheels are more compact (higher energy storage density) and they can be discharged totally on a regular duty cycle without causing damage to the system or foreshortening of the useful life. Flywheels furthermore require little maintenance offer no environmental emission as compared to batteries. The flywheel systems developed for a similar purpose in previous European projects had a maximum power up to 50 kW. With the increased power of wind turbines and the large fluctuations in photovoltaic energy there will be a strong need for a high power flywheel system. Since up scaling of the smaller systems is not possible because of several technical difficulties, a new system with a high power converter controller with very good power quality has to be designed. The objective of this project is the development of a modular high power flywheel energy storage system (more than fourfold the power and triple the energy content compared to existing flywheels) to control, store and release, the renewable energy supplied to the grid (figure 2). The system will be integrated in the electricity net in cooperation with the Dutch electrical utility (NUON). ... Prime Contractor: KEMA Nederland BV, Inspection Technology; Arnhem; Netherlands.
Types:
SupportProgram
Origin: /Bund/UBA/UFORDAT
Tags: Hochspannungsnetz ? Niederspannungsnetz ? CO2-Emission ? Europäische Kommission ? Elektrizität ? Stromversorgung ? Solarzelle ? Windenergie ? Windkraftanlage ? Wind ? Niederlande ? Weltenergiebedarf ? Alternative Energie ? Batterie ? Stromerzeugung ? Energieversorgung ? Erneuerbare Energie ? Zollabgabe ? Schwungrad ? Erneuerbare Ressource ? Studie ? Energietechnik ? Wirkungsgrad ? Energie ? Energiegewinnung ? Kreislaufsystem ? Modul ? Energiespeicher ? Globale Aspekte ? Rotor ? Energiespeicherung ? Schwingungstechnik ? Netz ?
Region: Nordrhein-Westfalen
Bounding box: 6.76339° .. 6.76339° x 51.21895° .. 51.21895°
License: cc-by-nc-nd/4.0
Language: Deutsch
Time ranges: 1997-12-01 - 2001-11-30
Accessed 1 times.