Description: Das Projekt "Nanostructured carbon-supported bimetal catalysts for the oxygen reduction at the H2-PEMFC and DMFC" wird vom Umweltbundesamt gefördert und von DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts durchgeführt. Background: Fuel cells are usually classified into working temperature categories. High temperature fuel cells (HTFC), such as the Solid Oxide Fuel Cell (SOFC) or the Molten Carbonate Fuel Cell (MCFC) are working in a temperature range of 600-950°C that allows a sufficient conductivity of the electrolyte. State of the art HTFCs have already shown high cell efficiency up to 60%. Low temperature fuel cells (LTFC) are mostly equipped with a polymer membrane such as Nafion whose conductivity depends on the presence of water molecules. Therefore, their working temperatures are usually limited to 80-90°C. With exception of MCFC that is specially designed for stationary electricity plans, both, high and low temperature fuel cells are planned to be used in a foreseeable future as energy converter for stationary and automotive applications. In the case of the LTFC, however, more robust systems and especially, more stable polymer membranes than PBI-based ones, which are still sensitive to cold starting processes that are able to work at 100-150°C are needed. Higher working temperatures mean higher efficiency of the catalysts, lower electrolyte resistances and as a consequence higher cell performances. These depend not only on the working temperature, kind of catalyst and membrane, but also on the purity of the fuel and its distribution within the diffusion and reaction layers and also on the evacuation of the reaction products, which can lead to catalyst poisoning and electrode flooding, respectively. The latter depends on the morphology and properties inherent to the diffusion and reaction layers, such as catalyst loading, porosity, hydrophobicity, thickness and additionally on the compression forces within the stack. For these reasons, the design of the membrane-electrodes assembly (MEA) remains a very important step within the fuel cell concept. One distinguishes two strategies: the most common one consists on coating the electrodes with the diffusion and reaction layers (CCE) and finally press them together with the membrane to a MEA. The second one aims to directly coat the membrane with the reaction and diffusion layer inks or pastes (CCM).
Types:
SupportProgram
Origin: /Bund/UBA/UFORDAT
Tags: Bleivergiftung ? Direkt-Methanol-Brennstoffzelle ? Tierhaltungsanlage ? Karbonatschmelze-Brennstoffzelle ? Festoxid-Brennstoffzelle ? Brennstoff ? Katalysator ? Elektrizität ? Elektrolyt ? Morphologie ? Polymer ? Sauerstoff ? Temperaturverteilung ? Wassertemperatur ? Zivilrecht ? Überschwemmung ? Brennelement ? Brennstoffzelle ? Kind ? Membranverfahren ? Temperatur ? Gelöster organischer Kohlenstoff ? Energie ? Energietechnik ? Energieumwandlung ? Leitfähigkeit ? Niedrigwasser ? Reaktionstemperatur ? Stand der Technik ? Wirkungsgrad ? Chemische Reaktion ? Diffusion ? Forschungseinrichtung ? Membran ? Effizienzsteigerung ? Elektrode ? Aufladung ? Nanostrukturierung ? Porosität ?
Region: Hessen
Bounding box: 9° .. 9° x 50.55° .. 50.55°
License: cc-by-nc-nd/4.0
Language: Deutsch
Time ranges: 2010-05-01 - 2013-04-30
Webseite zum Förderprojekt
https://dechema-dfi.de/kwi_media/Downloads/tc/Abgeschlossene+Projekte/Bimetall+Kats+f%C3%BCr+die+ORR+in+der+PEMFC+und+DMFC+F555_2_DrilletSakthivel/F555_2+Abschlussbericht+DR812_1_1+_+SCHU744_21_1-p-10001150.pdf (Webseite)Accessed 1 times.