Description: Wolken und Niederschlag gehören zu den größten Herausforderungen für derzeitige Wetter- und Klimamodelle. Der letzte IPCC Bericht stellt heraus, dass insbesondere die mikrophysikalischen Prozesse in Mischphasenwolken bestehend aus Eis und flüssigen Wasser bislang nur unzureichend verstanden sind was wiederum eine bessere Modellierung dieser Wolken erschwert. Mischphasenwolken kommen besonders häufig in den höheren Breiten vor, aber auch die meisten Wolken und Niederschlagprozesse in mittleren Breiten sind eng mit den Eis- und Schneepartikeln im Oberteil der Wolke verknüpft.Um unser Verständnis von diesen zentralen Prozessen zu verbessern, wie etwa die Frage wie Eisteilchen entstehen oder wie sie zu Schnee- oder Graupelpartikel anwachsen, benötigen wir umfangreiche Beobachtungsdatensätze als Basis um Modellparametrisierungen weiter zu verbessern.Daher möchten wir in diesem Projekt neueste Fernerkundungsverfahren, wie etwa Radarpolarimetrie, Dreifrequenzradar und die Radardopplerspektren, optimal mit passiven Beobachtungen und neuartigen in-situ Sensoren kombinieren. Nur durch die Kombination verschiedener Beobachtungstechniken, hat man die Möglichkeit die verschiedenen Einflussgrößen der zugrunde liegenden Prozesse zu unterscheiden. Dazu werden wir die Beobachtungsmöglichkeiten bestehender Infrastruktur mit neuen Messgeräten grundlegend erweitern, um die beschriebenen Prozesse in bislang unerreichter Genauigkeit zu beobachten.Da Fernerkundungsmessungen (z.B. Radarreflektivität) immer eine indirekte Messung der eigentlichen Modellgröße (etwa Eiswassergehalt) sind, werden wir einen Forwärtsoperator entwickeln, mit dem man aus den Modellsimulationen synthetische Beobachtungen erzeugen kann. Damit lassen sich reale und synthetische Messgrößen direkt vergleichen. Ein zentraler neuer Bestandteil des Forwärtsoperators wird dabei eine Datenbank der Streueigenschaften von Schnee- und Eispartikel sein. Um einen frei-zugänglichen Streudatensatz zu erzeugen, werden wir bereits zur Verfügung stehende Datensätze mit eigenen Streurechnungen kombinieren.Schließlich werden die Kombination aus neuen Beobachtungsverfahren und Forwärtsoperator nutzen, um die Parametrisierungen im Wettervorhersagemodell des Deutschen Wetterdienstes zu untersuchen. Des Weiteren werden wir für spezielle Fallstudien, bei denen sich ein bestimmter Prozess über längere Zeit erkennen lässt, Simulationen mit einem 1D Modell durchführen. Das 1D Modell erlaubt eine Vielzahl an detaillierten Parametrisierungen zu testen und Lücken im generellen Prozessverständnis zu identifizieren. Diese Erkenntnisse können dann wiederum zu Verbesserungen vereinfachter Parametrisierungen in Wetter- und Klimamodellen genutzt werden. Am Ende des Projektes wollen wir nicht nur einen neuartigen Daten und Methoden zur Verfügung stellen, sondern auch neue Wege aufzeigen, wie die Informationen der Beobachtungen für die Verbesserung von Modellparametrisierungen am besten nutzbar gemacht werden können.
Types:
SupportProgram
Origins:
/Bund/UBA/UFORDAT
Tags:
Bewölkung
?
Regen
?
Messgerät
?
Fischer-Tropsch-Verfahren
?
Radar
?
Sensor
?
Geografische Koordinaten
?
Reflexionsmessung
?
Verfahrenskombination
?
Fallstudie
?
Klimamodell
?
Prognosemodell
?
Regen
?
Simulationsmodell
?
Stand der Technik
?
Studie
?
Wassergehalt
?
Wettervorhersage
?
Wolke
?
Modellierung
?
Graupel
?
Datenbank
?
Fernerkundung
?
Niederschlag
?
Partikel
?
Wasser
?
Bram-Verfahren
?
Komplexverbindung
?
Region:
Nordrhein-Westfalen
Bounding boxes:
6.76339° .. 6.76339° x 51.21895° .. 51.21895°
License: cc-by-nc-nd/4.0
Language: Deutsch
Organisations
Time ranges:
2016-01-01 - 2025-07-31
Alternatives
-
Language: Englisch/English
Title: OPTIMice-close: Optimal combination of Polarimetric and Triple frequency radar techniques for Improving Microphysical process understanding of cold clouds and associated rainfall
Description: Clouds and precipitation are still one of the biggest challenges for weather prediction and climate models. The latest IPCC report points out that especially the microphysical processes in clouds comprised by mixtures of ice and liquid water are poorly understood which in turn hampers their proper modelling. These mixed-phase clouds are frequently observed at high latitudes but also at mid-latitudes most clouds are comprised by areas with temperatures below freezing and also most of the precipitation in mid-latitudes is produced via the ice phase.In order to make progress in a better understanding of how ice particles nucleate, how they grow to larger ice particles, snowflakes, or graupel, we need comprehensive and synergistic observations to validate and further develop model parametrizations of these processes. Within this project we aim to combine state-of-the-art remote sensing techniques i.e. scanning polarimetric radar, triple-frequency radar, radar Doppler spectra with novel in-situ sensors and passive remote sensors. Such a sensor combination is necessary because with a single sensor it is impossible to entangle all components of the underlying complex cloud processes. The combination of new instruments with existing infrastructure will provide us a powerful tool to target these processes in unprecedented detail.Remote sensing observation are always indirect measurements (e.g. radar reflectivity) of the quantities predicted by a numerical cloud model (e.g. ice water content). Therefore, we will build a radiative transfer framework which allows to simulate the observations based on model output. In this way real and synthetic observations can be directly compared. A central goal of the new radiative transfer framework will be to better characterize the scattering properties of frozen particles. For this we will perform numerical scattering calculations but also collect existing scattering datasets into an open-access scattering library.Finally, we will apply this framework to long-term simulations from the german weather forecast model but also to detailed microphysical simulations from a 1D spectral model. With the 1D model we aim to identify weaknesses in current process understanding by simulating case studies where the observations reveal a specific microphysical fingerprint e.g. by riming of ice particles within a layer of super-cooled liquid water. The results from this studies will be of great value also for the improvement of the less-detailed parametrizations used in numerical weather prediction and climate models. Within this project we aim to provide not only a completely novel observational dataset but also new strategies how an optimal knowledge transfer from observations to an improved modelling of cold cloud microphysical processes can be best achieved.
https://ufordat.uba.de/UFORDAT/pages/PublicRedirect.aspx?TYP=PR&DSNR=1118013
Status
Quality score
- Overall: 0.46
-
Findability: 0.50
- Title: 0.00
- Description: 0.10
- Identifier: false
- Keywords: 0.93
- Spatial: RegionIdentified (1.00)
- Temporal: true
-
Accessibility: 0.67
- Landing page: Specific (1.00)
- Direct access: false
- Publicly accessible: true
-
Interoperability: 0.00
- Open file format: false
- Media type: false
- Machine-readable metadata: false
- Machine-readable data: false
-
Reusability: 0.67
- License: ClearlySpecifiedAndFree (1.00)
- Contact info: false
- Publisher info: true
Accessed 1 times.