API src

Found 1111371 results.

Multibeam bathymetry processed data (EM 1002 echosounder entire dataset) of RV MARIA S. MERIAN during cruise MSM62/2

Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM62/2 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 23.03.2017 and 27.03.2017 in the Baltic Sea. The cruise aimed to investigate the impact of the Littorina transgression on the inflow of saline waters into the western Baltic and assessed the potential for future diminution of ventilation in the central and northern deeper basins due to isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM62/2 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. The echosounder has a curved transducer in which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM62/2 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM62/2 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.

Fließgewässermessstelle obh. Neunkirchen, Strbr. b. Grünhof, oh KA FOELTZ22, Ölschnitz

Die Messstelle obh. Neunkirchen, Strbr. b. Grünhof, oh KA FOELTZ22 (Messstellen-Nr: 14135) befindet sich im Gewässer Ölschnitz in Bayern. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.

Freiflächen-Photovoltaikanlagen in Deutschland (Datensatz)

Der rasche Ausbau der erneuerbaren Energiequellen stellt eine große Herausforderung dar, wenn es darum geht, die Energieentwicklung mit konkurrierenden Interessen in Einklang zu bringen. Dies unterstreicht die Notwendigkeit präziser räumlicher Daten, um eine effektive Bilanzierung, Verwaltung oder Bewertung der Einhaltung gesetzlicher Rahmenbedingungen zu ermöglichen. In diesem Beitrag wird ein Zero-Shot-Ansatz zur Extraktion von Parametern von Photovoltaik-Freiflächenanlagen in Deutschland auf der Grundlage von digitalen Orthofotos vorgestellt. Dies ermöglicht die genaue Identifizierung und Abgrenzung wesentlicher räumlicher Parameter, einschließlich des Bodenbedeckungsgrads der Photovoltaikmodule, des Reihenabstands zwischen den Modulreihen und ihrer genauen Ausrichtung. Die Ergebnisse dieser Studie sind in zweierlei Hinsicht bemerkenswert. Erstens erzielt die entwickelte technische Pipeline eine qualitativ hochwertige Segmentierung von Photovoltaik-Modulreihen, wobei über 71 % der Ergebnisse eine zufriedenstellende bis fehlerfreie Segmentierung aufweisen. Zweitens steht der resultierende Datensatz für weitere Analysen zur Verfügung und kann als Ausgangspunkt für die Entwicklung weiterer KI-Modelle zur Überwachung der Dynamik des Ausbaus von Freiflächen-Photovoltaikanlagen dienen. Diese Methodik unterstützt nicht nur die Bewertung der Einhaltung der Vorschriften, sondern verbessert auch die Entscheidungsprozesse an der Schnittstelle zwischen der Entwicklung erneuerbarer Energien und konkurrierenden Interessen, wie z. B. dem Naturschutz.

WMS MSRL: D8-Schadstoffe (sh-llur), Mittelwert 2005-2010

Der WMS umfasst Schadstoffe im Wasser und im Sediment, die an Messstationen des LLUR erfasst werden. Parameter: Quecksilber, Blei, Kupfer, Nickel, Arsen, Cadmium, Chrom, Zink.

Bodendauerbeobachtung im Land Brandenburg

Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg. Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg. Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg.

Ucker, Prenzlau, Wehr UP (0491200)

Hochwasserberichte und Messwerte werden für die Flussgebiete in Brandenburg herausgegeben. Die Flussgebiete sind auf Basis der Hochwassermeldedienstverordnung festgesetzt. Mit Hilfe der Karte des Flussgebietes ist eine räumliche Orientierung möglich. Unter Pegeldaten sind Terminwerte des Wasserstandes und wenn möglich des Durchflusses der Pegel eines Flussgebietes aufgelistet. Über die Karte und Tabellen der Pegeldaten sind die Pegelseiten mit Grafiken und weiteren Informationen verlinkt.

Multibeam bathymetry processed data (EM 1002 echosounder entire dataset) of RV MARIA S. MERIAN during cruise MSM52

Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM52 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 01.03.2016 and 28.03.2016 in the Baltic Sea. The cruise aimed gapless imagining of the major pre-alpine tectonic lineaments due to the fact that the Glückstadt Graben and the Avalonia-Baltica suture zone run across the southern Baltic [DOI: 10.2312/cr_msm52]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM52 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. It has a curved transducer of which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Generally, the system was acquiring data throughout the entire cruise. Responsible person during this cruise / PI: Laura Frahm. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM52 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM52 has a resolution of 35 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.

Stadtteil-Wanderwege

Die Karte stellt alle Stadtteilwege auf dem Gebiet der Landeshauptstadt Dresden dar. Die Markierungen und Farben in der Karte sind die gleichen, die der Wanderer vor Ort findet. Einige Stadtteilwege besitzen keine Wegmarkierung. Neben der Darstellung des Wegeverlaufs in der Karte, hat jeder Weg eine Beschreibung mit ein bis zwei Fotos (PDF-Format). Quellen: Die Erfassung der Wege erfolgte auf der Grundlage des Straßenknotennetzes. Die Karte soll dazu dienen, dass Bürger, die im Stadtgebiet zum Wandern gehen wollen, Informationen erhalten. Da nicht alle Stadteilwege und Erlebnispfade markiert sind, empfiehlt es sich den Ausschnitt auszudrucken. Die Daten sind für eine Anwendung im Maßstabsbereich 1 : 5000 geeignet.

Historische Wetterdaten

<p>Dieser Datensatz beinhaltet historische Wetterdaten der Station des DWD (Station-Nummer: 02712) im Konstanzer Silvanerweg 6 über einen längeren Zeitraum.</p> <p>Am 25.07.2017 ist eine Änderung des Gesetzes über den Deutschen Wetterdienst ("DWD-Gesetz") in Kraft getreten. Der DWD wird gesetzlich beauftragt, seine Wetter- und Klimainformationen weitgehend entgeltfrei zur Verfügung zu stellen. Zurzeit stehen viele Geodaten wie Modellvorhersagen, Radardaten, aktuelle Mess- und Beobachtungsdaten sowie eine große Zahl von Klimadaten auf dem Open Data Server <a href="https://opendata.dwd.de/"><strong>https://opendata.dwd.de</strong> </a>zur Verfügung. Die Klimadaten werden unter <strong><a href="https://opendata.dwd.de/climate_environment/">https://opendata.dwd.de/climate_environment/CDC</a></strong> bereitgestellt.</p> <p>Die frei zugänglichen Daten dürfen entsprechend der "Verordnung zur Festlegung der Nutzungsbestimmungen für die Bereitstellung von Geodaten des Bundes (GeoNutzV)" unter Beigabe eines Quellenvermerks ohne Einschränkungen weiterverwendet werden (<a href="https://gdz.bkg.bund.de">https://gdz.bkg.bund.de</a>). Im Hinblick auf die Gestaltung der Quellenvermerke fordert der Deutsche Wetterdienst (DWD) (gemäß § 7 DWD-Gesetz, § 3 GeoNutzV) zur Beachtung nachfolgender Hinweise auf:</p> <ul> <li>Die Pflicht zur Einbindung beigegebener Quellenvermerke gilt für die unveränderte Verwendung von Geodaten und anderer Leistungen des DWD. Auch bei Bildung von Auszügen oder Änderung des Datenformats sind Quellenvermerke einzubinden. Eine Abbildung des DWD-Logos ist als Quellenvermerk im Sinne der GeoNutzV ausreichend.</li> <li>Bei weitergehenden Veränderungen, Bearbeitungen, neuen Gestaltungen oder sonstigen Abwandlungen erwartet der DWD mindestens eine Nennung des DWD in zentralen Quellenverzeichnissen oder im Impressum.</li> <li>Veränderungshinweise gemäß GeoNutzV können z.B. lauten: "Datenbasis: Deutscher Wetterdienst, Rasterdaten bildlich wiedergegeben", "Datenbasis: Deutscher Wetterdienst, Einzelwerte gemittelt" oder "Datenbasis:Deutscher Wetterdienst, eigene Elemente ergänzt".</li> </ul> <p>Bei einer Verwendung, die nicht der Zweckbestimmung der Leistung des DWD gerecht wird, sind beigegebene Quellenvermerke zu löschen. Das gilt insbesondere für Wetterwarnungen, wenn nicht sichergestellt ist, dass diese jederzeit vollständig und unverzüglich allen Nutzern zur Verfügung gestellt werden.</p> <p><strong>Quelle: </strong>Deutscher Wetterdienst (DWD)</p>

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Erforschung von mikrobieller Sulfatreduktion unter hoher Temperatur und Druck

Selbst in tiefen Sedimentschichten unter z.T. mehreren Kilometern mächtiger Sedimentbedeckung finden sich noch aktive Mikroorganismen. Mit zunehmender Tiefe steigt die Temperatur im Untergrund an und überschreitet irgendwann die Grenze bis zu welcher Leben möglich ist. Die bisher festgestellte Temperaturobergrenze von Leben auf der Erde wurden an Mikroorganismen von hydrothermalen Systemen, sogenannten Schwarzen Rauchern gemessen und liegt bei ca. 120 Grad C. In Sedimenten hingegen liegt die Grenze deutlich niedriger. Messdaten aus Ölfeldern deuten auf eine Grenze von ca. 80 Grad C hin. Diese Diskrepanz zwischen hydrothermalen und sedimentären Systemen wurde dadurch erklärt, dass die Mikroorganismen in Sedimenten nicht genügend Energie gewinnen können um die bei hohen Temperaturen verstärkt notwendigen Reparaturen ihrer Zellbestandteile wie DNA und Proteinen durchzuführen. Interessanterweise lässt sich metabolische Aktivität bei extrem hohen Temperaturen nur dann nachweisen, wenn die Experimente unter hohem Druck stattfinden. IODP Expedition 370 wurde spezifisch zur Klärung der Frage nach dem Temperaturlimit von Leben in sedimentären Systemen durchgeführt. Im Nankai Graben vor der Küste Japans herrscht ein recht hoher geothermischer Gradient von ca. 100 Grad C/km, d.h. das gesamte Temperaturspektrum in dem Leben möglich ist erstreckt sich über ein Tiefeninterval von etwas mehr als einem Kilometer. Durch modernste Bohr- und Labortechniken war es möglich, Proben von höchster Qualität zu gewinnen, welche garantiert frei von Kontamination sind. Die Expedition hat einen stark interdisziplinären Charakter, so dass eine Vielzahl von biologischen und chemischen Parameter gemessen wurde, welche eine detaillierte Charakterisierung des Sediments erlauben. Das beantragte Projekt ist ein wichtiger Teil der Expedition, da Sulfatreduktion der quantitativ wichtigste anaerobe Prozess für den Abbau von organischem Material im Meeresboden ist. Im Rahmen einer MSc Arbeit wurden bereits erste Messungen durchgeführt. Diese konnten zeigen das Sulfatreduktion über die gesamte Kernlänge messbar ist, wenn auch z.T. mit extrem geringen Raten. Im Rahmen des beantragten Projekts sollen weitere Messungen durchgeführt werden, unter anderem auch unter hohem Druck. Dazu soll ein Hochdruck Temperatur-Gradientenblock gebaut und betrieben werden. Neben Sedimenten von IODP Exp. 370 sollen weitere Experimente mit hydrothermal beeinflusstem Sediment aus dem Guaymas Becken durchgeführt werden. Ein Vergleich zwischen diesen beiden Sedimenten soll weitere Einblicke in einen der wichtigsten biologischen Prozesse im Meeresboden liefern und ein besseres Verständnis über die Grenzen von Leben im allgemeinen.

1 2 3 4 5111136 111137 111138