API src

Found 111 results.

Related terms

Induktion von Chromosomenaberrationen in menschlichen Lymphozyten durch ionisierende Strahlen ('biologische Dosimetrie') und Radiomimetika

Entnimmt man einer strahlenexponierten Person Blut, so laesst sich nach Kultivierung der Lymphozyten die Haeufigkeit bestimmter Chromosomenmutationen (dizentrische Chromosomen, Ringchromosomen) ermitteln, die durch die Strahlung induziert worden waren. Mit Hilfe von 'Eichkurven', die die Abhaengigkeit der Zahl der Aberrationen pro Zeile von der Strahlendosis wiedergeben, kann man die empfangene Dosis als 'Ganzkoerperaequivalentdosis' abschaetzen. Bei sehr niedrigen Dosen begnuegt man sich mit dem Nachweis einer statistisch signifikanten Erhoehung der Kontrollrate. Untersuchter Personenkreis: beruflich exponierte Personen, Strahlenunfallopfer, bestrahlte Patienten. Die Methode soll weiterentwickelt werden durch a) 'Semiautomatisierung' der mikroskopischen Auswertung, b) Ausarbeitung adaequater statistischer Verfahren. Diese strahlenbiologischen Untersuchungen werden ergaenzt durch Untersuchungen zur Induktion von Chromosomenaberrationen in menschlichen Lymphozyten durch Radiomimetika (z.B. Bleomycin, Phleomycin).

Neuberechnung der Anlage IV der Strahlenschutzverordnung

Berechnung der 50-Jahre-Folgeaequivalentdosis fuer Organe und Gewebe, der effektiven Aequivalentdosis und der daraus resultierenden Grenzwerte der Jahresaktivitaetszufuhr fuer beruflich strahlenexponierte Personen. Ueberpruefung der metabolischen Daten, die in der Publikation ICRP 30 vorgeschlagen werden und eventuelle Unterbreitung eines Vorschlages. Vergleichsrechnungen mit alternativen metabolischen Daten. Sensitivitaetsanalyse fuer ausgewaehlte Verbindungen. Untersuchung der Relevanz kritischer Einwaende gegen die Anwendung des ICRP 30 Konzepts. Modellberechnungen der normierten Dosisleistung bei externer Bestrahlung.

Weiterentwicklung vom ARTM zur realistischeren Berechnung der effektiven Dosis bezüglich Gammasubmersion, Radon-222 Folgeprodukte und Resuspension

Was sind NORM -Rückstände?

Was sind NORM -Rückstände? Radionuklide der natürlichen Zerfallsreihen von Uran -238, Uran -235 und Thorium-232 sind in allen Gesteinen und Erzen in Spuren vorhanden. Werden Gesteine und Erze als Rohstoffe genutzt, werden daher grundsätzlich auch natürliche Radionuklide unbeabsichtigt in industrielle Prozesse eingeführt. Bei manchen Industriezweigen können sich natürliche Radionuklide in Teilstoffströmen anreichern. In der Fachliteratur werden diese Rückstände oft als "naturally occurring radioactive materials" (abgekürzt " NORM ") bezeichnet. Der Schutz von Beschäftigten und der Bevölkerung vor erhöhten Strahlenexpositionen durch natürliche radioaktive Stoffe in Deutschland ist im Strahlenschutzgesetz und in der Strahlenschutzverordnung geregelt. Radionuklide der natürlichen Zerfallsreihen von Uran -238, Uran -235 und Thorium-232 sind in allen Gesteinen in Spuren vorhanden. Natürliche Radioaktivität Wenn die spezifische Aktivität innerhalb einer Zerfallsreihe für alle Radionuklide gleich ist, spricht man von einem "radioaktiven Gleichgewicht". Durch chemische Prozesse (zum Beispiel Lösungsvorgänge mit dem Wasser) und physikalische Prozesse (zum Beispiel Ausgasung des radioaktiven Gases Radon oder Transport von Radionukliden mit Wasser) kann es zu Umverteilungen von Radionukliden kommen. Diese Umverteilungsprozesse können das Gleichgewicht stören. Als Folge sind natürliche Radionuklide in allen Umweltbereichen (Luft, Boden, Wasser, Pflanzen, Tiere) vorhanden. Je nach mineralogischer Zusammensetzung der Gesteine - insbesondere bei Vererzungen - ist der Radionuklidgehalt jedoch unterschiedlich hoch. Als obere Grenze für den natürlichen Hintergrundgehalt von Uran und Thorium (beziehungsweise der Folgeprodukte) in Böden und Gesteinen gelten im Allgemeinen 0,2 Becquerel pro Gramm (entspricht 200 Becquerel pro Kilogramm), in Einzelfällen (zum Beispiel Granit) ist eine spezifische Aktivität bis 0,5 Becquerel pro Gramm dokumentiert. Spezielle thorium- und uranhaltige Minerale können auch Aktivitätsgehalte von mehreren Becquerel pro Gramm aufweisen. Die Radionuklide der Zerfallsreihen sind – mit Ausnahme des Gases Radon – durchweg Schwermetalle. Chemisch und physikalisch verhalten sie sich in der Umwelt und bei industriellen Prozessen vergleichbar zu anderen, nicht radioaktiven Schwermetallen. Rückstände mit erhöhter natürlicher Radioaktivität aus industriellen Prozessen Öl-Pipeline Bei der Nutzung von Rohstoffen (zum Beispiel Erze) werden somit grundsätzlich natürliche Radionuklide in technologische Prozesse eingeführt. In bestimmten Industriezweigen können Beschäftigte oder die Bevölkerung infolge natürlicher Radioaktivität einer erhöhten Strahlung ausgesetzt sein. Ursachen sind entweder die Verwendung von Rohstoffen mit erhöhtem Radionuklidgehalt oder Radionuklidanreicherungen in Rückständen aus bestimmten technologischen Prozessen. In der Fachliteratur werden diese Rückstände oft als "naturally occurring radioactive materials" (abgekürzt " NORM ") bezeichnet. Ein Beispiel sind die Ablagerungen in Förderrohren aus der Erdöl- und Erdgasindustrie, die - je nach Lagerstätte - hohe Gehalte des radioaktiven Elementes Radium aufweisen können. NORM -Rückstände können grundsätzlich verwertet werden, sofern bei der beabsichtigten Folgenutzung keine erhöhte Strahlenexposition für Einzelpersonen der Bevölkerung zu erwarten ist. Falls dies aus technologischer beziehungsweise wirtschaftlicher Sicht nicht zumutbar ist, müssen die Rückstände auf Deponien sicher beseitigt werden. Gesetzliche Regelungen für Rückstände Mit dem Teil 3 der Strahlenschutzverordnung ( StrlSchV ) vom 20. Juli 2001 wurden erstmals in Deutschland Regelungen zum Schutz der Beschäftigten und der Bevölkerung vor erhöhten Strahlenexpositionen durch natürliche radioaktive Stoffe getroffen. Die betrachteten Materialien werden nicht wegen ihrer radioaktiven Eigenschaften oder ihrer Eignung als Kernbrennstoff genutzt; die erhöhten Radionuklidgehalte treten vielmehr als (unerwünschte) Begleiterscheinung einiger herkömmlicher industrieller Prozesse auf. Der Gesetzgeber hat es daher als vernünftig angesehen, die Regelungen auf solche Prozesse und Stoffe zu beschränken, bei denen sich aufgrund der heute üblichen Verwertungs- oder Beseitigungswege die Strahlenbelastung deutlich erhöhen kann. Eine erhöhte Strahlenbelastung für Einzelpersonen der Bevölkerung liegt vor, wenn der Richtwert von 1 Millisievert pro Jahr für die effektive Dosis überschritten wird. Dann sind Maßnahmen zum Schutz der Bevölkerung zu ergreifen. Der Richtwert orientiert sich an der Schwankungsbreite der natürlichen Strahlenexposition und ist auch in anderen Bereichen des Strahlenschutzes etabliert. Beschäftigte, die bei ihrer Arbeit mit NORM -Rückständen umgehen, gelten dabei als Teil der allgemeinen Bevölkerung. Anfang 2014 veröffentlichte die Europäische Atomgemeinschaft ( EURATOM ) Grundnormen zum Strahlenschutz . Die EURATOM -Mitgliedsländer sind verpflichtet, diese Regelungen in nationales Recht umzusetzen. In Deutschland erfolgte dies im Jahr 2017 mit dem Strahlenschutzgesetz . Ergänzend hierzu wurde die Strahlenschutzverordnung im Jahr 2018 grundlegend überarbeitet. Beide gesetzlichen Regelungen sind seit dem 31. Dezember 2018 in Kraft. Überwachungsgrenzen Mit Hilfe umfangreicher Untersuchungen in relevanten Industriezweigen wurde eine Anzahl von Rückständen festgelegt, bei deren Beseitigung oder Verwertung Maßnahmen zum Schutz der Bevölkerung erforderlich sein können. Ein Bewertungsmaßstab hierfür sind die Überwachungsgrenzen in Anlage 5 der Strahlenschutzverordnung . Werden diese Überwachungsgrenzen überschritten, kann die zuständige Strahlenschutzbehörde des Bundeslandes die Rückstände auf Antrag aus der Überwachung entlassen. Hierzu ist ein Nachweis zu erbringen, dass der Richtwert von 1 Millisievert pro Jahr für die Bevölkerung bei der beabsichtigten Verwertung oder Beseitigung eingehalten wird und die geplante Verwertung oder Beseitigung abfallrechtlich zulässig ist. Da beim Umgang mit derartigen Rückständen kein plötzliches Freisetzungs- oder Unfallpotenzial besteht, hat der Gesetzgeber auf den sonst im Strahlenschutz üblichen Genehmigungsvorbehalt verzichtet. Die betroffenen Betriebe setzen die Maßnahmen weitgehend eigenverantwortlich um. Sie müssen jedoch der zuständigen Landesbehörde die Ergebnisse ihrer Prüfungen mitteilen. Diese kann dann bei Bedarf weitere Auflagen erteilen oder Kontrollen vornehmen. Auswirkungen Die Erfahrungen beim Vollzug von Teil 3 der bisherigen Strahlenschutzverordnung aus dem Jahr 2001 zeigen, dass die Regelungen das Bewusstsein aller Beteiligten um mögliche Probleme und Gefahren beim Umgang mit Stoffen, die erhöhte natürliche Radioaktivität enthalten, gestärkt haben. Folglich reduzierte sich in einigen Bereichen die Strahlenbelastung, ohne dabei die betroffenen Industriezweige übermäßig zu belasten. Hilfestellung Das Bundesumweltministerium ( BMUKN ) und das Bundesamt für Strahlenschutz ( BfS ) unterstützen die zuständigen Landesbehörden beim Vollzug der rechtlichen Regelungen zur natürlichen Radioaktivität unter anderem durch untergesetzliche Regelwerke und Empfehlungen. So hat beispielsweise die Strahlenschutzkommission ( SSK ) auf Veranlassung des Bundesumweltministeriums eine Empfehlung zur repräsentativen Beprobung von Rückständen herausgegeben. Das BfS unterstützt die Umsetzung, indem es Leitfäden zur Ermittlung der Strahlenexposition sowie Messanleitungen erarbeitet. Außerdem prüft das BfS gegenwärtig, ob die Empfehlungen und Anleitungen zum Thema Bergbauliche Hinterlassenschaften auf Rückstände nach Anlage 1 des Strahlenschutzgesetzes übertragbar sind. Stand: 05.01.2026

Dosiskoeffizienten für die Abschätzung der effektiven Dosis für das ungeborene Kind nach Inkorporation von Radionukliden durch die Mutter

Dosiskoeffizienten für die Abschätzung der effektiven Dosis für das ungeborene Kind nach Inkorporation von Radionukliden durch die Mutter Im Folgenden sind Dosiskoeffizienten für die Abschätzung der effektiven Dosis für das ungeborene Kind nach Inkorporation von Radionukliden durch die Mutter vor oder während der Schwangerschaft aufgelistet. Diese Dosiskoeffizienten wurden für Inhalation und Ingestion sowohl für akute als auch für chronische Aufnahme mit Hilfe einer im BfS entwickelten Software ermittelt. Als Grundlage bei der Entwicklung der Software dienten die aktuellsten Empfehlungen der internationale Strahlenschutzkommission ICRP sowie die neuesten biokinetischen und dosimetrischen Modelle. Dosiskoeffizienten für die Abschätzung der effektiven Dosis für das ungeborene Kind nach Inkorporation von Radionukliden durch die Mutter (PDF, 205 KB, Datei ist barrierefrei⁄barrierearm) Stand: 31.01.2024

Röntgendiagnostik: Häufigkeit und Strahlenexposition für die deutsche Bevölkerung

Röntgendiagnostik: Häufigkeit und Strahlenexposition für die deutsche Bevölkerung Das BfS schätzt, wie viele Röntgenuntersuchungen in Deutschland durchgeführt werden und wie hoch die daraus resultierende Strahlenexposition für die Bevölkerung ist. Diese Daten werden für jedes Kalenderjahr erhoben und mindestens alle zwei Jahre ausgewertet und bewertet. Für das Jahr 2023 wurde für Deutschland eine Gesamtzahl von etwa 125 Millionen Röntgenanwendungen abgeschätzt, gut 40 Prozent davon allein im zahnmedizinischen Bereich. Jede Röntgenuntersuchung ist mit einem gewissen – wenn auch geringen – Strahlenrisiko verbunden. Daher wird regelmäßig abgeschätzt, wie viele Untersuchungen durchgeführt werden und wie hoch die daraus resultierende Strahlenexposition für die deutsche Bevölkerung ist. Diese Daten werden für jedes Kalenderjahr erhoben, ausgewertet und bewertet, um auch zeitliche Trends erkennen zu können. Die Auswertungen erfolgen mindestens alle zwei Jahre. Wie wird die Häufigkeit von Röntgenuntersuchungen abgeschätzt? Ärztliche Leistungen werden über spezielle Gebührenziffern abgerechnet, die die ärztlichen Maßnahmen und damit auch die hier interessierenden radiologischen Maßnahmen beschreiben. Da ca. 98 % der deutschen Bevölkerung gesetzlich oder privat krankenversichert sind, kann die Häufigkeit röntgendiagnostischer Untersuchungen gut mithilfe dieser Gebührenziffern abgeschätzt werden. Diese werden dem BfS für den ambulanten Bereich regelmäßig von der kassenärztlichen beziehungsweise kassenzahnärztlichen Bundesvereinigung sowie dem Verband der privaten Krankenversicherung zur Verfügung gestellt. Für den stationären Bereich stehen dem BfS zu zahlreichen Röntgenuntersuchungen, insbesondere zu dosisintensiveren Verfahren wie der Computertomographie ( CT ), verlässliche Daten des Statistischen Bundesamtes zur Verfügung. Darüber hinaus gehen hier die Ergebnisse eines Ressortforschungsvorhabens ein. Wie wird die Strahlenexposition durch Röntgendiagnostik abgeschätzt? Für die Abschätzung der kollektiven effektiven Dosis (Kollektivdosis) werden für die verschiedenen Untersuchungsarten jeweils die Produkte von Untersuchungshäufigkeit und einem repräsentativen Schätzwert für die mittlere effektive Dosis dieser Untersuchungsart ermittelt und über alle Untersuchungsarten aufsummiert. Mithilfe jährlicher Bevölkerungszahlen wird die mittlere effektive Dosis pro Einwohner und Jahr berechnet. Abbildung 1: Häufigkeit von Röntgenuntersuchungen in Deutschland Ergebnisse der aktuellen Auswertung Häufigkeit Für das Jahr 2023 wurde für Deutschland eine Gesamtzahl von etwa 125 Millionen Röntgenanwendungen abgeschätzt (ohne zahnmedizinischen Bereich etwa 80 Mio. ). Die Anzahl von Röntgenuntersuchungen in Deutschland lag zwischen 2016 und 2023 im Mittel bei ca. 1,5 pro Einwohner und Jahr (siehe Abbildung 1). Etwa 80 % aller Röntgenmaßnahmen werden im ambulanten Bereich durchgeführt und hiervon ca. 90 % bei Kassenpatienten, wobei es sich im ambulanten Bereich vorwiegend um konventionelle Röntgenaufnahmen handelt. Die Gesamthäufigkeit von Röntgenanwendungen verlief zwischen 2016 und 2023 leicht abnehmend. Auffallend ist ein durch die COVID-19-Pandemie bedingter Rückgang der Häufigkeit in 2020 mit anschließendem Wiederanstieg in 2021. Konventionelle Röntgenaufnahmen Abbildung 2: Prozentualer Anteil der verschiedenen Untersuchungsarten an der Gesamthäufigkeit (links) und an der kollektiven effektiven Dosis (rechts) für das Jahr 2023 Etwa 40 % aller Röntgenuntersuchungen im Jahr 2023 wurden in der Zahnmedizin (inklusive Kieferorthopädie) durchgeführt (siehe Abbildung 2). Neben den zahnmedizinischen Untersuchungen entfiel der größte Teil aller Röntgenuntersuchungen auf das Skelett (das heißt Schädel, Schultergürtel, Wirbelsäule, Beckengürtel, Extremitäten) und auf den Brustkorb (Thorax). Die Anzahl der meisten konventionellen Röntgenuntersuchungen, z.B. von Schädel, Thorax und Wirbelsäule, hat in den letzten 15 Jahren deutlich abgenommen. Die Häufigkeit von Mammographien nahm infolge der Einführung des Deutschen Mammographie-Screening-Programms zwischen 2007 und 2009 um 35 % zu und ist – nach anschließender geringfügiger Abnahme – ab 2011 weitgehend konstant (Ausnahme: Pandemie-bedingter Rückgang in 2020). Computertomographie ( CT ) Die Häufigkeit von CT -Untersuchungen hat zwischen 2016 und 2023 um ca. 25 % zugenommen (siehe Abbildung 1). Etwa die Hälfte aller CT -Untersuchungen werden bei stationären Patienten und Patientinnen durchgeführt. Eine Zunahme der Untersuchungshäufigkeit ist übrigens auch bei der Magnetresonanztomographie ( MRT ) , also einem Schnittbildverfahren, das keine ionisierende Strahlung verwendet, zu verzeichnen. Dosis Abbildung 3: Mittlere effektive Dosis (in mSv) pro Einwohner und Jahr durch Röntgenuntersuchungen in Deutschland Die mittlere effektive Dosis infolge von Röntgenanwendungen in Deutschland pro Einwohner beläuft sich für das Jahr 2023 auf 1,5 Millisievert ( mSv ) (siehe Abbildung 3). Die mittlere effektive Dosis durch CT -Untersuchungen pro Einwohner und Jahr hat im betrachteten Zeitraum zugenommen, wobei dieser Anstieg wegen der über die Jahre abnehmenden Dosis pro CT -Untersuchung moderater ausfällt als die zugehörige Zunahme der CT -Häufigkeit. Bei den restlichen Untersuchungsverfahren nimmt die jährliche Pro-Kopf- Dosis über den Zeitraum 2016 bis 2023 dagegen ab (siehe Abbildung 3). Im kassenärztlichen ambulanten Bereich hat sich die Pro-Kopf- Dosis durch konventionelle Röntgenuntersuchungen in den letzten 15 Jahren nahezu halbiert. Erwartungsgemäß ist der relative Anteil konventioneller Röntgenuntersuchungen an der kollektiven effektiven Dosis eher gering. Beispielsweise beträgt dieser für Untersuchungen des Skelettsystems nur etwa 5 % , obgleich der Anteil an der Häufigkeit bei ca. einem Viertel liegt. CT -Untersuchungen sowie die ebenfalls dosisintensiven Angiographien und interventionellen Maßnahmen der Blutgefäße tragen zwar lediglich ca. 15 % zur Gesamthäufigkeit bei, ihr Anteil an der kollektiven effektiven Dosis betrug im Jahr 2023 jedoch beinahe 90 % (siehe Abbildung 2). Stand: 02.12.2025

Glossar

Abklingbecken Ein mit Wasser befülltes Becken, in dem Brennelemente nach dem Reaktoreinsatz so lange lagern, bis die Aktivität und Wärmeentwicklung auf einen gewünschten Wert gesunken ist, so dass eine Handhabung, u.a. zum Abtransport möglich wird. Ableitung radioaktiver Stoffe Ist die Abgabe flüssiger, an Schwebstoffe gebundener oder gasförmiger radioaktiver Stoffe auf hierfür vorgesehenen Wegen. (§ 1 Abs. 1 StrlSchV ). Ein Beispiel ist die geordnete und überwachte Abgabe von Fortluft aus Anlagengebäuden. Ableitungswerte Sind Angaben über die Aktivität (also Menge) radioaktiver Stoffe als auch über die hervorgerufene Dosis (also Wirkung) von Ableitungen. Für die durch Ableitung freigesetzten radioaktiven Stoffe hat der Gesetzgeber Grenzwerte festgesetzt (§§ 99 ff. StrlSchV ). Die in Genehmigungen festgelegten Werte (nach § 102 StrlSchV ) liegen in Berlin deutlich unterhalb dieser Grenzwerte. Die tatsächlich freigesetzten radioaktiven Stoffe unterschreiten wiederum in der Regel die genehmigten Werte deutlich. Äquivalentdosis Äquivalentdosis ist die mit einem Qualitätsfaktor gewichtete (multiplizierte) Energiedosis . Der Qualitätsfaktor berücksichtigt die relative biologische Wirksamkeit (die Wirkung ist bei verschiedenen Geweben nicht gleich) der unterschiedlichen Strahlenarten. Die Äquivalentdosis ist deshalb die Messgröße für die biologische Wirkung ionisierender Strahlung auf den Menschen. Ihre Einheit ist J/kg mit dem speziellen Namen Sievert (Sv). Aktivität Aktivität ist die Anzahl von Atomkernen eines radioaktiven Stoffes , die in einem bestimmten Zeitintervall zerfallen. Die Aktivität wird in Becquerel (Einheit im Internationalen Einheitssystem) gemessen und beschreibt die Anzahl der Kernzerfälle eines radioaktiven Stoffes in einer Sekunde. Siehe auch Erläuterung unter Dosis . Anlage, kerntechnische siehe kerntechnische Anlage Becquerel Das Becquerel (Kurzzeichen: Bq) ist die Maßeinheit der Aktivität eines radioaktiven Stoffes : und gibt an, wie viele Kernzerfälle pro Sekunde stattfinden. Betreiber/in Der Inhaber einer Genehmigung gemäß § 7 Atomgesetz zum Betrieb einer kerntechnischen Anlage . Brennelemente Brennelemente enthalten Kernbrennstoff . Sie bestehen meist aus einer Vielzahl von Brennstäben und sind wesentlicher Bestandteil des Reaktorkerns einer kerntechnischen Anlage . Dekontamination Alle Maßnahmen und Verfahren zur Beseitigung einer möglichen radioaktiven Verunreinigung einer Person oder eines Objekts (z.B. Geräte, Kleidung, Körperteile). Dialoggruppe Gesprächskreis durch ein Vorhaben direkt oder indirekt berührter Bürgerinnen und Bürger aus der Umgebung, Vertreterinnen und Vertreter von Parteien, Initiativen und Umweltorganisationen sowie sonstige interessierte Personen aus der Öffentlichkeit. Ziel ist es, das Vorhaben aktiv mit dem Vorhabenträger zusammen zu diskutieren und evtl. mitzugestalten. Darüber hinaus treffen sich die am Dialogverfahren des BER II Beteiligten ohne Vertreter des HZB im Rahmen der sogenannten Begleitgruppe. Dosimetrie Lehre von den Verfahren zur Messung der Dosis bzw. der Dosisleistung bei der Wechselwirkung von ionisierender Strahlung mit Materie. Dosis Die Dosis ist ein Maß für die Strahlenwirkung. Siehe auch die Erläuterungen zu Energiedosis , Organdosis , Effektive Dosis . Dosisleistung Dosis, die in einem bestimmten Zeitintervall erzeugt wird. Die Einheit ist Sievert oder Gray pro Zeitintervall. Effektive Dosis Die Effektive Dosis berücksichtigt die unterschiedliche Empfindlichkeit der Organe und Gewebe bezüglich stochastischer (zufallsgesteuert auftretender) Strahlenwirkungen. Dazu werden die spezifizierten Organdosen mit einem Gewebe-Wichtungsfaktor multipliziert. Die Effektive Dosis erhält man durch Summation der gewichteten Organdosen aller spezifizierten Organe und Gewebe, wobei die Summe der Gewebe-Wichtungsfaktoren 1 ergibt. Die Gewebe-Wichtungsfaktoren bestimmen sich aus den relativen Beiträgen der einzelnen Organe und Gewebe zum gesamten stochastischen Strahlenschaden (Detriment) des Menschen bei gleichmäßiger Ganzkörperbestrahlung. Die Einheit der Effektiven Dosis ist J/kg mit dem speziellen Namen Sievert (Sv). In der Praxis des Strahlenschutzes werden in der Regel Bruchteile der Dosiseinheit verwendet, zum Beispiel Millisievert oder Mikrosievert Elektromagnetische Strahlung Elektromagnetische Strahlung ist nicht an Materie gebundene Strahlung (kein “Teilchenstrom”), die sich mit Lichtgeschwindigkeit ausbreitet und je nach Energieinhalt (charakterisiert durch die Frequenz oder die Wellenlänge) unterschiedliche Eigenschaften hat. Von den langen zu den kurzen Wellen unterscheidet man Ultralangwelle, Langwelle, Mittelwelle, Kurzwelle, Mikrowelle, Wärmestrahlung (Infrarot), sichtbares Licht, Ultraviolett, Röntgenstrahlung, Gammastrahlung. Für Infrarot und für sichtbares Licht besitzen wir Sinnesorgane, die anderen Strahlungsarten können nur über ihre Wirkung oder mit Messgeräten wahrgenommen werden. Im Ultraviolettbereich liegt die Grenze der ionisierenden Strahlung : kürzerwellige Strahlung ionisiert, längerwellige nicht. Gammastrahlung ist die kürzestwellige und energiereichste dieser Strahlungsarten, sie tritt bei Vorgängen in Atomkernen auf. Energiedosis Die Energiedosis beschreibt die Energie, die einem Material mit einer bestimmten Masse durch ionisierende Strahlung zugeführt wird, dividiert durch diese Masse. Die Einheit der Energiedosis ist J/kg mit dem speziellen Namen Gray (Kurzzeichen: Gy). Entlassung aus dem Atomgesetz Mit der Entlassung aus dem Atomgesetz liegt keine kerntechnische Anlage nach § 2 Abs. 3a Atomgesetz mehr vor. EURATOM-Vertrag Der EURATOM-Vertrag ist einer der Römischen Verträge und damit Bestandteil der Gründungsvereinbarung der Europäischen Union. Das Ziel ist nach Artikel 1 die Schaffung der für die rasche Bildung und Entwicklung von Kernindustrien erforderlichen Voraussetzungen zur Hebung der Lebenshaltung in den Mitgliedstaaten und zur Entwicklung der Beziehungen mit den anderen Ländern. Kapitel 3 regelt Maßnahmen zur Sicherung der Gesundheit der Bevölkerung. Fernüberwachungssystem (Reaktorfernüberwachungssystem – RFÜ) Für die deutschen Kernkraftwerke existieren komplexe Messsysteme zur Erfassung von Anlagendaten und Werten der Umweltradioaktivität (KFÜ). Im Falle des Berliner Forschungsreaktors ist ein der KFÜ analog aufgebautes Reaktorfernüberwachungssystem (RFÜ) vorhanden. Das RFÜ erfasst und überwacht vollautomatisch rund um die Uhr Messwerte zum aktuellen Betriebszustand des Forschungsreaktors BER II einschließlich der Abgaben (Emissionen) in die Luft sowie den Radioaktivitätseintrag in die Umgebung (Immission). Freigabe Die Freigabe ist ein Verwaltungsakt (§ 33 Abs. 2 StrlSchV), der die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des Strahlenschutzgesetzes (und auf diesem beruhender Rechtsverordnungen) bewirkt. Er kann Vorgaben zum weiteren Umgang oder zur Verwendung, Verwertung oder Beseitigung der freigegebenen und damit rechtlich als nicht radioaktiv anzusehenden Stoffe enthalten. Freigabeverfahren Nach §§ 31 ff. Strahlenschutzverordnung (StrlSchV) kann die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des Strahlenschutzgesetzes (und auf diesem beruhenden Rechtsverordnungen) auf Antrag bewirkt werden. Voraussetzung hierfür ist, dass die zuständige Behörde einen Freigabebescheid erteilt. Dieser wird erst dann erteilt, wenn festgestellt worden ist, dass die Materialien oder Objekte nicht so stark strahlen, dass durch sie ein Mitglied der Bevölkerung gefährdet werden könnte. Hierfür müssen bestimmte Anforderungen erfüllt werden, die (z. B. durch Messung) überprüft werden. Der Freigabebescheid kann zusätzliche Festsetzungen enthalten, wonach die freigegebenen Objekte nur dann als nicht radioaktive Objekte gelten, wenn mit ihnen in bestimmter Weise weiter umgegangen wird. Durch die freigegebenen Stoffe darf für Einzelpersonen der Bevölkerung nur eine effektive Dosis bis zu 10 Mikrosievert im Kalenderjahr auftreten (10-Mikrosievert-Konzept). Formelles Verfahren Ist ein auf Antrag erfolgendes behördliches Prüfungsverfahren mit dem Ziel einer Bescheidung durch die zuständige Behörde. Je nach Thematik können sich formelle Genehmigungsverfahren über Jahre erstrecken. Fortluft Der Begriff Fortluft stammt aus der Lüftungs- und Klimatechnik und bezeichnet den Teil der geführten Abluft, welcher nicht weitergenutzt und in die Atmosphäre abgegeben wird. Halbwertszeit Die Zeit, in der die Hälfte der Menge der Atomkerne eines bestimmten radioaktiven Stoffes zerfallen ist. Nach zwei Halbwertszeiten liegt demnach noch ein Viertel der Anfangsmenge vor, nach drei Halbwertszeiten ein Achtel usw. Nach zehn Halbwertszeiten ist die Menge und die Aktivität eines radioaktiven Stoffes auf 1/1024 oder rund ein Promille des Anfangswertes gesunken usw. Die Halbwertszeit ist charakteristisch für eine bestimmte radioaktive Atomkernsorte („Nuklid“). Herausgabeverfahren Nicht jeder Stoff oder Gegenstand in einer kerntechnischen Anlage , der von einer Genehmigung nach § 7 Atomgesetz umfasst ist, ist zwingend radioaktiv kontaminiert oder aktiviert . Stoffe, Gegenstände, Gebäude oder Bodenflächen, die nachweislich von Vornherein weder radioaktiv kontaminiert noch aktiviert sind, fallen nicht unter das in der Strahlenschutzverordnung geregelte Freigabeverfahren . Ein klassisches Beispiel ist ein Anlagenzaun, der in der Genehmigung gefordert wird (also zum genehmigten Bereich gehört), aber nie mit Strahlung oder radioaktiven Stoffen in Verbindung stand. Das Herausgabeverfahren stellt daher ergänzend sicher, dass die Entlassung auch dieser Materialien aus dem atomrechtlichen Genehmigungsbereich überwacht wird. Das Verfahren wird behördlich begleitet. Das Herausgabeverfahren wird grundsätzlich in der Genehmigung zu Stilllegung und Abbau einer kerntechnischen Anlage festgelegt und im atomrechtlichen Aufsichtsverfahren, d.h. bei der nachfolgenden Stilllegung und dem Abbau der kerntechnischen Anlage, angewendet. IAEA International Atomic Energy Agency – Internationale Atomenergie-Organisation IMIS Das Integrierte Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt ( IMIS ) dient dazu, die Radioaktivität in der Umwelt zum Schutz der Bevölkerung zu überwachen, und ist im Strahlenschutzgesetz verankert. Die Überwachungsaufgaben werden zwischen Bund und Ländern aufgeteilt. INES INES steht für International Nuclear and Radiological Event Scale und ist eine Internationale Bewertungsskala für nukleare Ereignisse in kerntechnischen Anlagen (Kernkraftwerken, Zwischenlager etc.), aber auch allgemein bei sämtlichen Ereignissen im Zusammenhang mit radioaktiven Stoffen . Informelles Verfahren Das informelle Verfahren ist vom formellen Genehmigungsverfahren zu unterscheiden. Es dient zunächst ausschließlich der frühzeitigen Information aller potentiell Betroffenen eines bestimmten Vorhabens und steht in der alleinigen Verantwortung des Vorhabenträgers. Das informelle Verfahren umfasst z.B. Informationsveranstaltungen oder eine erweiterte Medienpräsenz. Es steht dem Vorhabenträger weiterhin zu, bei Bedarf eine Dialoggruppe einzurichten, der eine aktive Mitwirkung vorbehalten sein kann. Iodblockade Bei einem Unfall in einer kerntechnischen Anlage kann unter anderem auch radioaktives Iod freigesetzt werden. Durch die rechtzeitige Einnahme von hochdosierten Iodid-Tabletten kann die – Iod speichernde – Schilddrüse mit nicht radioaktivem Iod gesättigt und so die Aufnahme radioaktiven Iods verhindert werden. Siehe auch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) ionisierende Strahlung Strahlung, die so energiereich ist, dass sie beim Auftreffen auf Luftmoleküle aus diesen Elektronen herausschlagen, also sie ionisieren kann. Dabei wird üblicherweise bei dem Begriff “Strahlung” nicht zwischen lichtartiger Strahlung (Röntgenstrahlung oder Gammastrahlung) und Strömen energiereicher Teilchen (Alphastrahlung, Betastrahlung, Neutronenstrahlung usw.) unterschieden – für die Naturwissenschaft ist ein Scheinwerferstrahl ein “Strahl”, ein Wasserstrahl aber auch (diese beiden sind aber nicht ionisierend). Mehr zu ionisierender Strahlung und deren Wirkung beim Bundesamt für Strahlenschutz . Katastrophenschutzplan Er beschreibt Maßnahmen zum Schutz der Bevölkerung in der Umgebung des Forschungsreaktors BER II und dient dem Zweck, die Zeit zwischen einem Schadensereignis und den zu treffenden Einsatzmaßnahmen optimal zu nutzen und damit die Schäden in der Umgebung zu begrenzen, die bei einem schweren Unfall entstehen können. Dabei beschreibt der Katastrophenschutzplan die der Planung zugrundeliegende Ausgangslage, das gefährdete Gebiet, die Aufgaben der Gefahrenabwehr und die Zusammenarbeit der zuständigen Behörden und Einrichtungen. Kerntechnische Anlage Kerntechnische Anlagen sind ortsfeste Anlagen, die eine Genehmigung nach Atomgesetz benötigen. Hierunter fallen im eigentlichen Sinn Anlagen zur Erzeugung, Bearbeitung, Verarbeitung, Spaltung oder Aufbewahrung von Kernbrennstoffen oder zur Aufarbeitung bestrahlter Kernbrennstoffe, die alle eine Genehmigung nach § 7 des Atomgesetzes benötigen. Gemäß § 2 Abs. 3a des Atomgesetzes gelten außerdem folgende Einrichtungen als „kerntechnische Anlagen“: Anlagen zur Aufbewahrung von bestrahlten Kernbrennstoffen nach § 6 Abs. 1 oder Abs. 3 Atomgesetz, Anlagen zur Zwischenlagerung für radioaktive Abfälle, wenn die Zwischenlagerung direkt mit einer vorstehend bezeichneten kerntechnischen Anlage in Zusammenhang steht und sich auf dem Gelände der Anlage befindet. Einrichtungen, in denen mit Kernbrennstoffen sonst umgegangen wird (nach § 9 des Atomgesetzes), werden gelegentlich als „kerntechnische Einrichtung im weiteren Sinn“ in die Definition einbezogen. Kernbrennstoffe Was unter den Begriff „Kernbrennstoff“ zu verstehen ist, wird in § 2 Abs. 1 des Atomgesetzes genauer definiert. Danach sind Kernbrennstoffe eine Teilgruppe der radioaktiven Stoffe , und zwar “besondere spaltbare Stoffe“ u.a. in Form von Plutonium 239, Plutonium 241 oder mit den Isotopen 235 oder 233 angereichertem Uran. Mehr zu Kernbrennstoffen wird hier angeboten. Kerntechnisches Regelwerk Die Nutzung der Kernenergie ist in Deutschland durch verschiedene Gesetze, Verordnungen, Regelungen, Leit- und Richtlinien geregelt. Unterhalb der Gesetzes- und Verordnungsebene werden die Anforderungen durch das kerntechnische Regelwerk weiter konkretisiert. Weitere Informationen, u.a. auch zur Regelwerkspyramide, finden sich auf den Internetseiten des Bundesamtes für die Sicherheit der nuklearen Entsorgung (BASE) . Kontamination Gemäß § 3 Abs. 2 Nr. 19 der Strahlenschutzverordnung eine Verunreinigung von Arbeitsflächen, Geräten, Räumen, Wasser, Luft usw. durch radioaktiven Stoffe . Unter Oberflächenkontamination versteht man die Verunreinigung einer Oberfläche mit radioaktiven Stoffen. Für Zwecke des Strahlenschutzes wird bei der Oberflächenkontamination zwischen festhaftender und nicht festhaftender (ablösbarer) Kontamination unterschieden. Bei nicht festhaftender Oberflächenkontamination kann nicht ausgeschlossen werden, dass sich radioaktive Stoffe ablösen und verbreitet werden. Kontrollbereich siehe Strahlenschutzbereich Landessammelstelle Berlin (ZRA) Der Gesetzgeber verpflichtet jedes Bundesland eine Landessammelstelle für radioaktive Abfälle einzurichten. Diese nimmt Abfälle aus Medizin, Industrie und Forschung an, jedoch Betriebs- oder Stilllegungsabfälle von Kernkraftwerken oder anderen kerntechnischen Anlagen nur in speziell gelagerten Fällen mit besonderer Erlaubnis. Das Land Berlin hat dem Helmholtz-Zentrum Berlin den gesetzlichen Auftrag zum Betrieb der Berliner Landessammelstelle für radioaktive Abfälle, genannt „Zentralstelle für radioaktive Abfälle“, ZRA , übertragen. Die ZRA übernimmt folglich als Berliner Landessammelstelle schwach- und mittelradioaktive Abfälle , die z.B. bei Anwendern radioaktiver Stoffe in der Industrie, in der Medizin sowie in Forschung und Lehre des Landes Berlin anfallen. Mediatorin oder Mediator Der Begriff stammt aus dem Lateinischen und bedeutet “Vermittler“. Umgangssprachlich wird eine Mediatorin oder ein Mediator auch als Streitschlichterin oder Streitschlichter bezeichnet, da die Aufgabe darin besteht, einen Konflikt zwischen mehreren Parteien friedlich zu lösen. Meist gestaltet sich die Lösung in Form eines Kompromisses oder eines Vergleichs. Megawatt (MW) siehe Watt . Meldekategorien (siehe auch meldepflichtiges Ereignis ) Gemäß der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung werden meldepflichtige Ereignisse nach der Frist, in der die Aufsichtsbehörden unterrichtet werden müssen, in unterschiedliche Meldekategorien unterteilt. Sie werden im Einzelnen in den Anlagen 1 bis 5 der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung aufgeführt. Meldepflichtiges Ereignis Vorkommnis, das nach der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung der zuständigen Aufsichtsbehörde zu melden ist. Es handelt sich dabei bei weitem nicht nur um Unfälle oder Störfälle; diese machen erfahrungsgemäß nur einen sehr kleinen Bruchteil der meldepflichtigen Ereignisse aus. Zu melden sind (als „Normalmeldung“) unter anderem alle Abweichungen vom Normalzustand, die eine sicherheitswichtige Einrichtung beeinträchtigen könnten, auch wenn selbst deren Ausfall noch keine Gefahr darstellen würde. Ein Beispiel für eine Normalmeldung bei einem Forschungsreaktor (Bericht Seite 3 und 7) finden Sie hier . Wesentlichere Befunde sind als Eilmeldung oder gar als Sofortmeldung in das Meldesystem einzubringen. Meldepflichtige Ereignisse werden entsprechend in verschiedene Meldekategorien unterteilt. Weitere Informationen stellt das Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) hier . Mikrosievert Sievert ist die Maßeinheit der effektiven Dosis , benannt nach dem schwedischen Mediziner und Physiker Rolf Sievert. 1 Mikrosievert (µSv) sind 0,000 0001 Sievert (Sv). Bsp.: Eine Zahnaufnahme erzeugt pro Anwendung eine Dosis von weniger als 10 µSv. Millisievert 1 Millisievert (mSv) sind 1.000 Mikrosievert (µSv) oder 0,001 Sievert (Sv). Bsp.: Die Dosis einer Ganzkörper-Computertomographie eines Erwachsenen beträgt pro Anwendung ca. 10 mSv. Mittelradioaktive Abfälle siehe Radioaktiver Abfall Neutronen Neutronen sind ungeladene Elementarteilchen. Sie werden insbesondere bei der Kernspaltung freigesetzt. Die Kernspaltung ist nur für schwere Atomkerne (z.B. vom Element Uran) charakteristisch. Die Neutronenstrahlung besitzt wie die Gammastrahlung ein hohes Durchdringungsvermögen und erfordert zur Abschirmung ebenfalls einen stärkeren Einsatz von Abschirmmaterialien. Mehr zu Neutronen und Neutronenstrahlung finden Sie hier . Organdosis Die Organdosis berücksichtigt die unterschiedliche biologische Wirksamkeit verschiedener Arten ionisierender Strahlung (bei gleicher Energiedosis). Sie ist das Produkt aus der Organ-Energiedosis und dem Strahlungs-Wichtungsfaktor. Beim Vorliegen mehrerer Strahlungsarten ist die gesamte Organdosis die Summe der ermittelten Einzelbeiträge. Die Einheit der Organdosis ist J/kg mit dem speziellen Namen Sievert (Sv). Ortsdosis Ortsdosis ist eine operative Messgröße zur Abschätzung der Strahlenmenge an einem Ort und ist definiert als die Äquivalentdosis für Weichteilgewebe (z.B. Fettgewebe und Muskelgewebe), gemessen an einem bestimmten Ort. Ortsdosisleistung (ODL) Die Ortsdosisleistung ist die pro Zeitintervall erzeugte Ortsdosis. Die Ortsdosis ist die Äquivalentdosis für Weichteilgewebe (z.B. Muskelgewebe oder Fettgewebe), gemessen an einem bestimmten Ort. Personendosis Personendosis ist eine operative Messgröße zur Abschätzung der von einer Person erhaltenen Dosis und ist definiert als die Äquivalentdosis gemessen an einer repräsentativen Stelle der Körperoberfläche. Personendosimeter Messgeräte zur Bestimmung der Personendosis als Schätzwert für die Körperdosis einer Person durch externe Bestrahlung (§§ 66 und 172 StrlSchV ). Radioaktiver Stoff Radioaktive Stoffe ( Kernbrennstoffe und sonstige radioaktive Stoffe) im Sinne von § 2 Abs. 1 des Atomgesetzes sind alle Stoffe, die folgende Bedingungen erfüllen: Sie enthalten ein oder mehrere Radionuklide und ihre Aktivität oder spezifische Aktivität kann im Zusammenhang mit der Kernenergie oder dem Strahlenschutz nicht außer Acht gelassen werden. Wann die Aktivität oder spezifische Aktivität eines Stoffes nicht außer Acht gelassen werden kann ist in den Regelungen des Atomgesetzes (§ 2 Absatz 2 AtG) oder der Strahlenschutzverordnung festgeschrieben. In der Bundesrepublik sind Stoffe mit zerfallenden Atomkernen daher kein „radioaktiver Stoff“, wenn in der Strahlenschutzverordnung festgelegt ist, festgelegt ist, dass die entstehende Strahlung unwesentlich ist. Solche Festlegungen findet man z.B. in § 5 der Strahlenschutzverordnung (StrlSchV). Das neue Strahlenschutzgesetz greift in seinem § 3 diese Definition aus dem Atomgesetz auf. Mehr zu Grenzwerten im Strahlenschutz finden Sie hier . Radioaktivität Radioaktivität ist die Eigenschaft bestimmter Stoffe, sich spontan (ohne äußere Wirkung) umzuwandeln (zu „zerfallen“) und dabei charakteristische Strahlung (ionisierende Strahlung) auszusenden. Die Radioaktivität wurde 1896 von Antoine Henri Becquerel an Uran entdeckt. Wenn die Stoffe, genauer gesagt, die Radionuklide, in der Natur vorkommen, spricht man von natürlicher Radioaktivität; sind sie ein Produkt von Kernumwandlungen in Kernreaktoren oder Beschleunigern, so spricht man von künstlicher Radioaktivität. Mehr über die Wirkung ionisierender Strahlung finden Sie hier . Röntgenstrahlung Durchdringende elektromagnetische Strahlung mit einem Frequenzspektrum (und Energie) zwischen Ultraviolettstrahlung und Gammastrahlung. Mehr zum Thema Röntgenstrahlung finden Sie hier . Auch bei Röntgenstrahlung gelten die Grundsätze des Strahlenschutzes. Mehr dazu wird hier angeboten. Rückbauverfahren Der Abbauprozess einer kerntechnischen Anlage , welcher typischerweise aus verschiedenen Verfahrensschritten besteht, z.B. Dekontamination, Demontage, Gebäudeabriss. Sicherheitsbericht Der Sicherheitsbericht ist Teil der einzureichenden Antragsunterlagen zu Stilllegung und Rückbau einer kerntechnischen Anlage . Er legt die relevanten Auswirkungen des Vorhabens im Hinblick auf die kerntechnische Sicherheit und den Strahlenschutz dar. Er soll außerdem Dritten die Beurteilung ermöglichen, ob die mit der Stilllegung und dem Abbau verbundenen Auswirkungen sie in ihren Rechten verletzen könnten. Sperrbereich siehe Strahlenschutzbereich Stilllegung Die Stilllegung einer kerntechnischen Anlage besteht hauptsächlich aus dem Rückbau (siehe Rückbauverfahren ) des nuklearen Teils und der Entsorgung des radioaktiven Inventars „(Gesamtheit der in einer kerntechnischen Anlage enthaltenen radioaktiven Stoffe). Zielsetzung ist die Beseitigung der Anlage und Verwertung der Reststoffe so weit wie möglich. Stilllegungsverfahren Der Begriff „Stilllegungsverfahren“ bezeichnet den Gesamtprozess von der Einreichung des Grundantrages bis zur endgültigen Entlassung der kerntechnischen Anlage aus dem Atomgesetz. Strahlendosis siehe Dosis Strahlenexposition Ist ein Synonym für Strahlenbelastung. Bezeichnung für die Einwirkung ionisierender Strahlung auf Lebewesen oder Materie. Strahlenschutz (nur bezogen auf die schädigende Wirkung ionisierender Strahlung) Strahlenschutz dient dem Schutz von Menschen und Umwelt vor den schädigenden Wirkungen ionisierender Strahlung aus natürlichen oder künstlichen Strahlenquellen. Strahlenschutzbeauftragter Nach § 43 bis 44 der Strahlenschutzverordnung ( StrlSchV ) die Person, die neben dem Strahlenschutzverantwortlichen (Genehmigungsinhaber) in einem Betrieb für die Einhaltung der Strahlenschutzvorschriften im Rahmen seiner Befugnisse verantwortlich ist. Strahlenschutzbereich Strahlenschutzbereiche sind räumlich abgrenzbare Bereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden. Sie unterteilen sich in Überwachungsbereich, Kontrollbereich und Sperrbereich. Überwachungsbereich Nicht zum Kontrollbereich (und nicht zum Sperrbereich) gehörende betriebliche Bereiche, in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 1 Millisievert oder eine Organ-Äquivalentdosis von mehr als 50 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 50 Millisievert: erhalten können. Der Zutritt zu einem Überwachungsbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn Personen eine dem Betrieb dienende Aufgabe wahrnehmen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist, sie Auszubildende oder Studierende sind und der Aufenthalt in diesem Bereich zur Erreichung ihres Ausbildungszieles erforderlich ist oder sie Besucher sind. Kontrollbereich Sind Strahlenschutzbereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden und in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 6 Millisievert oder eine Organ-Äquivalentdosis von mehr als 15 Millisievert für die Augenlinse oder 150 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 150 Millisievert erhalten können. Der Zutritt zu einem Kontrollbereich darf aus gesundheitlichen Gründen Personen nur erlaubt werden, wenn sie zur Durchführung oder Aufrechterhaltung der in diesem Bereich vorgesehenen Betriebsvorgänge tätig werden müssen, ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist und eine zur Ausübung des ärztlichen, zahnärztlichen oder tierärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, zugestimmt hat oder bei Auszubildenden oder Studierenden dies zur Erreichung ihres Ausbildungszieles erforderlich ist. Sperrbereich Bereiche des Kontrollbereichs, in denen die Ortsdosisleistung höher als 3 Millisievert (mSv) durch Stunde sein kann. Der Zutritt zu einem Sperrbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn sie zur Durchführung der in diesem Bereich vorgesehenen Betriebsvorgänge oder aus zwingenden Gründen tätig werden müssen und sie unter der Kontrolle eines Strahlenschutzbeauftragten oder einer von ihm beauftragten Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, stehen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs- oder Begleitperson erforderlich ist und eine zur Ausübung des ärztlichen oder zahnärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, schriftlich zugestimmt hat. Es gelten spezielle Reglungen für Schwangere. Umweltverträglichkeitsprüfung (UVP) Umweltverträglichkeitsprüfung im Stilllegungsgenehmigungsverfahren des Forschungsreaktors BER II: Die Durchführung einer UVP dient der frühzeitigen Feststellung, Erkennung und Bewertung der möglichen Auswirkungen des Rückbaus des Reaktors für Menschen, Tiere, Pflanzen sowie auf die Qualität der Böden, Luft, Gewässer, Klima, Landschaft, Kulturgüter und sonstige Schutzgüter. Die Durchführung der UVP ist bei der Stilllegung von Reaktoranlagen ab 1 kW thermischer Dauerleistung gesetzlich vorgeschrieben (vgl. der Forschungsreaktor BER II hat eine thermische Dauerleistung von 10 Megawatt ). Überwachungsbereich siehe Strahlenschutzbereich Watt Maßeinheit für Leistung. Der Forschungsreaktor BER II hat eine Nennleistung von 10 MW. Zum Vergleich: Ein mittleres Kernkraftwerk hat eine Nennleistung von ca. 1.400 MW. 1 Megawatt (MW) = 1.000.000 Watt (W) > 1 Gigawatt (GW) = 1.000 Megawatt (MW) = 1.000.000 Kilowatt (kW) = 1.000.000.000 Watt (W) Wetterparameter Ist eine Größe wie Temperatur, Windstärke oder Niederschlagsmenge, mit deren Hilfe eine Aussage über die Wetterverhältnisse gewonnen werden kann. Das spielt eine Rolle zum Beispiel bei der Vorhersage der Ausbreitung radioaktiver Stoffe nach einer Freisetzung. ZRA Die Zentralstelle für radioaktive Abfälle (ZRA) betreibt als Institution der Helmholtz-Zentrum Berlin GmbH die Landessammelstelle Berlin. Das Atomgesetz verpflichtet jedes Bundesland, eine Landessammelstelle zur Zwischenlagerung der in seinem Gebiet angefallenen radioaktiven Abfälle einzurichten. Zwischenlager Lagerort für radioaktive Abfälle, die aufbewahrt werden müssen, bis man sie an ein Endlager abgeben kann. Es werden Zwischenlager für hochradioaktive Abfälle ( Brennelemente und Wiederaufarbeitungsabfälle) und Zwischenlager für schwach- und mittelradioaktive Abfälle unterschieden.

Wo kommt Radioaktivität in der Umwelt vor?

Wo kommt Radioaktivität in der Umwelt vor? Radionuklide sind in der Umwelt überall anzutreffen. Grundsätzlich ist jeder Mensch auf der Erde auf natürliche Weise ionisierender Strahlung ausgesetzt. Niemand kann sich ihr entziehen. Ursache dafür sind Quellen, die in der Natur unabhängig vom Menschen entstanden sind und existieren. Radionuklide sind in der Umwelt überall anzutreffen Bei vielen Menschen erzeugt der Begriff " Radioaktivität " Unbehagen. Die von radioaktiven Stoffen ausgesandte ionisierende Strahlung wird häufig als bedrohlich empfunden - unabhängig davon, wie stark sie ist und woher sie stammt. Grundsätzlich ist jeder Mensch auf der Erde auf natürliche Weise ionisierender Strahlung ausgesetzt. Niemand kann sich ihr entziehen. Ursache dafür sind Quellen, die in der Natur unabhängig vom Menschen entstanden sind und existieren. Wirken ionisierende Strahlen auf einen Menschen ein, so sprechen wir von einer Strahlenexposition – umgangssprachlich auch Strahlenbelastung genannt. Natürliche Strahlenbelastung Die natürliche Strahlenbelastung setzt sich aus inneren und äußeren Komponenten zusammen. Die innere Komponente macht den Hauptanteil der natürlichen Strahlenexposition aus. Zwei Drittel der gesamten natürlichen Strahlenexposition entfallen auf die innere Komponente, ein Drittel auf die äußere. Innere Strahlenbelastung Äußere Strahlenbelastung Innere Strahlenbelastung Über die Atemluft und die Nahrung nimmt der Mensch seit jeher natürliche Radionuklide in den Körper auf. Darüber hinaus können Radionuklide über offene Wunden in den Körper gelangen. Aufnahme über den Atem Der Großteil der natürlichen Strahlenbelastung geht auf das Einatmen des radioaktiven Gases Radon mit seinen Folgeprodukten zurück. Durch Radon sind wir im Durchschnitt pro Jahr einer Strahlenbelastung von 1,1 Millisievert ausgesetzt. Weitere Informationen finden Sie unter Radon. Aufnahme über die Nahrung Mit der Nahrung werden natürliche Radionuklide aus den radioaktiven Zerfallsreihen des Thoriums und Urans sowie das Kalium-40 aufgenommen; dadurch kommen im Mittel jährlich 0,3 Millisievert hinzu. Weitere Informationen finden Sie unter Radioaktivität in Lebensmitteln. Äußere Strahlenbelastung Die äußere Strahlenbelastung beträgt rund 0,7 Millisievert im Jahr. Kosmische Strahlung Ein erheblicher Teil der ionisierenden Strahlung , die auf den Menschen einwirkt, stammt aus der kosmischen Strahlung . Diese gelangt von der Sonne und aus den Tiefen des Weltalls zur Erde und besteht im Wesentlichen aus energiereichen Teilchen und aus Gammastrahlung . Auf ihrem Weg durch die Lufthülle wird die kosmische Strahlung teilweise absorbiert. Die Intensität der kosmischen Strahlung hängt somit von der Höhenlage ab. Sie ist auf Meeresniveau am niedrigsten und nimmt mit der Höhe eines Ortes zu. Auf der Zugspitze ist sie viermal höher als an der Küste. Flugzeuge kann man gegen die kosmische Strahlung nicht abschirmen. Daher ist der Mensch während eines Fluges dieser Strahlung ausgesetzt. Weitere Informationen finden Sie unter Strahlenexposition von Flugpassagieren sowie unter Überwachung des fliegenden Personals . Terrestrische Strahlung Zur äußeren Strahlenexposition zählt des Weiteren die terrestrische Strahlung . Ihre Ursache sind natürlich vorkommende radioaktive Materialien, die regional sehr unterschiedlich in Böden und Gesteinsschichten der Erdkruste vorhanden sind. Die durch die terrestrische Strahlung verursachte jährliche effektive Dosis der Bevölkerung beträgt im Bundesgebiet im Mittel etwa 0,4 Millisievert , davon entfallen auf den Aufenthalt im Freien zirka 0,1 Millisievert und auf den Aufenthalt in Gebäuden etwa 0,3 Millisievert . Natürlich vorkommende Radionuklide in Baumaterialien Steine und Erden sind wichtige Rohstoffe für mineralische Baumaterialien wie zum Beispiel Ziegel und Beton. Die in den Steinen enthaltenen Radionuklide gehen in die Baustoffe über und tragen auf diese Weise beim Aufenthalt in Häusern ebenfalls zu einer äußeren Strahlenexposition bei. Weitere Informationen finden Sie unter Baumaterialien. Natürliche Strahlenbelastung in Deutschland Die gesamte natürliche Strahlenbelastung in Deutschland beträgt durchschnittlich 2,1 Millisievert im Jahr ( effektive Dosis ). Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von etwa einem bis zu zehn Millisievert . Belastung aus künstlichen radioaktiven Quellen Bei künstlichen Radionukliden in der Umwelt denkt man an Reaktorkatastrophen, wie sie in Tschornobyl ( russ. : Tschernobyl) oder Fukushima geschehen sind. Aber auch bei Kernwaffenversuchen wurden künstliche Radionuklide freigesetzt. Auch im Normalbetrieb entweichen in geringem Maße künstliche Radionuklide aus kerntechnischen Anlagen. Dies wird in verschiedenen Messnetzen streng überwacht. Weitere Informationen finden Sie unter IMIS . Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 04.07.2025

Grundlagen ionisierender Strahlung und Strahlenschutz

Ionisierende Strahlung und radioaktive Stoffe werden in vielen Anwendungsbereichen gezielt genutzt, können andererseits aber auch schädlich für den Menschen sein. Um die Risiken der Anwendung zu minimieren, gibt es in Deutschland umfangreiche Regelungen zum Strahlenschutz, die in entsprechende Schutzmaßnahmen umgesetzt werden. Bei Einwirkung ionisierender Strahlung auf den menschlichen Körper unterscheidet man die möglichen Risiken in sofort auftretende (deterministische) und später auftretende (stochastische) Schäden. Für stochastische Schäden gibt es keine Schwellenwerte. Die Wahrscheinlichkeit zu erkranken, insbesondere an Krebs, ist vor allem von der Dauer und Höhe der Strahleneinwirkung abhängig. Deterministische Schäden (Akutschäden) treten bei Menschen ab einer bestimmten Dosisschwelle auf. Ab dieser nimmt der Schweregrad des Schadens mit der Höhe der Strahlendosis zu. Deterministische Schäden sind beispielweise Hautrötung, Haarausfall oder Blutarmut (Anämie). Bei höheren Dosen kommt es zum Organversagen. Mehr Informationen finden Sie unter Bundesamt für Strahlenschutz (BfS): Wie wirkt ionisierende Strahlung? Um stochastische Schäden zu minimieren, wurden rechtsverbindlich (StrlSchG 2017; 2013/59/EURATOM) drei allgemeine Grundsätze des Strahlenschutzes festgelegt: 1. Rechtfertigung: Eine Anwendung ionisierender Strahlung ist nur zulässig, wenn sie mehr Nutzen bringt als möglicherweise Schäden verursacht. Der Nutzen soll dabei auf keine andere Weise zu erlangen sein. Die Rechtfertigung wird bei neuen Sachverhalten überprüft. 2. Dosisbegrenzung: Bei den als gerechtfertigt eingestuften Anwendungen ionisierender Strahlung dürfen die gesetzlich festgelegten Grenzwerte nicht überschritten werden. Für die allgemeine Bevölkerung und für Personen, die beruflich ionisierender Strahlung ausgesetzt sind, gelten unterschiedliche Werte. 3. Optimierung: Die Strahlenbelastung bei der Nutzung ionisierender Strahlung muss für alle Beteiligten so niedrig gehalten werden, wie es vernünftigerweise möglich ist (ALARA-Prinzip: As Low As Reasonably Achievable). In der Praxis kann das durch verschiedene Maßnahmen erreicht werden, u.a.: Aufenthaltsdauer verkürzen: Je kürzer man ionisierender Strahlung ausgesetzt ist, desto geringer ist die Strahlenbelastung. Wird die Aufenthaltsdauer halbiert, reduziert sich die Strahlenbelastung auch um die Hälfte. Abstand vergrößern: Je mehr man sich von der Quelle ionisierender Strahlung entfernt, desto geringer ist die Strahlenbelastung. Dabei gilt: Doppelter Abstand reduziert die Strahlenbelastung auf ein Viertel. Abschirmung: Die Quelle ionisierender Strahlung ist durch geeignete Materialien und ausreichende Dicke abzuschirmen. Dabei spielt die Art der Strahlung eine wichtige Rolle. Beispielsweise reicht ein Blatt Papier um Alphateilchen abzuschirmen. Zur Abschirmung von Gamma- und Röntgenstrahlung braucht man aber dicke Schichten aus Blei oder Beton. Aktivität minimieren: Soll eine radioaktive Quelle zum Einsatz kommen, ist die Aktivität möglichst niedrig zu halten. Um die Einwirkung ionisierender Strahlung auf ein Medium zu quantifizieren, verwendet man den Begriff der Dosis. Im Strahlenschutz werden unterschiedliche Dosisarten definiert: Die Energiedosis gibt z.B. an, wie viel Energie ein Medium bei der Bestrahlung mit ionisierender Strahlung aufnimmt. Sie wird in Gray (Gy) gemessen. Die Organ-Äquivalentdosis ist die gewichtete Energiedosis in einem Organ oder Gewebe, unter Berücksichtigung biologischer Wirkung der Strahlung. Sie wird in Sievert (Sv) angegeben. Die Effektive Dosis ist die Summe aller gewichteten einzelnen Organ-Äquivalentdosen, unter Berücksichtigung der Strahlenempfindlichkeit der verschiedenen Organe. Sie wird ebenfalls in Sievert (Sv) angegeben. In der folgenden Tabelle sind Beispiele für effektive Dosen in mSv durch häufige Tätigkeiten und Anwendungen zusammengestellt:

A8. Wann ist ein Genehmigungsantrag oder eine Anzeige notwendig?

A8. Wann ist ein Genehmigungsantrag oder eine Anzeige notwendig? Handelt es sich bei der Strahlenanwendung, die von dem in der regulären Krankenversorgung Üblichen abweicht, um eine therapeutische Strahlenanwendung , ist grundsätzlich ein Genehmigungsantrag beim BfS erforderlich. Für diagnostische Strahlenanwendungen , die von dem in der regulären Krankenversorgung Üblichen abweichen, ist entweder ein Genehmigungsantrag beim BfS oder eine Anzeige bei BfArM / PEI erforderlich. Diagnostische Strahlenanwendungen sind dann anzeigebedürftig, wenn 1. das Forschungsvorhaben die Prüfung von Sicherheit und Wirksamkeit eines Verfahrens zur Behandlung ausschließlich folgender Personengruppen zum Gegenstand hat: a) volljährige, kranke Menschen oder b) minderjährige, kranke Menschen, wenn die Summe der studienbedingten effektiven Dosen aller Strahlenanwendungen, die im Rahmen des Forschungsvorhabens erfolgen, voraussichtlich 6 Millisievert pro Person nicht überschreitet, 2. bei allen Studienteilnehmenden eine Krankheit vorliegt, deren Behandlung im Rahmen des Forschungsvorhabens geprüft wird, 3. in dem Forschungsvorhaben ausschließlich Anwendungen radioaktiver Stoffe oder ionisierender Strahlung durchgeführt werden, die nicht selbst Gegenstand des Forschungsvorhabens sind, 4. die Art der Anwendung anerkannten Standardverfahren zur Untersuchung von Menschen entspricht und 5. es sich bei dem Forschungsvorhaben handelt um a) eine klinische Prüfung im Sinne des § 4 Absatz 23 des Arzneimittelgesetzes, b) eine klinische Prüfung im Sinne des Artikels 2 Nummer 45 der Verordnung ( EU ) 2017/745 oder c) eine sonstige klinische Prüfung im Sinne des § 3 Nummer 4 des Medizinprodukterecht-Durchführungsgesetzes. Für die Zulässigkeit einer Anzeige müssen alle Anzeigevoraussetzungen vorliegen. Wenn mindestens eine der o. g. Voraussetzungen nicht erfüllt ist, ist ein Genehmigungsantrag für die diagnostischen Strahlenanwendungen beim BfS zu stellen.

1 2 3 4 510 11 12