API src

Found 90 results.

Related terms

Living Planet Report 2008

Der Living Planet Report der Umweltstiftung World Wide Fund for Nature (WWF) wird alle zwei Jahre veröffentlicht und beschreibt den ökologischen Zustand der Erde. Der Bericht setzt zwei sich ergänzende Kennzahlen ein, um die Veränderungen der weltweiten Biodiversität und des menschlichen Konsums zu untersuchen. Der Living Planet Index spiegelt den Zustand der Ökosysteme wider, während der Ökologische Fußabdruck den Umfang und die Art der Beanspruchung dieser Systeme durch den Menschen anzeigt. Der Living Planet Index der weltweiten Biodiversität wird an den Beständen von 1.686 Wirbeltierarten in aller Welt gemessen und hat in den letzten 35 Jahre um fast 30 Prozent abgenommen. Die Nachfrage der Menschheit nach den Ressourcen des Planeten, ihr Ökologischer Fußabdruck, übersteigt die regenerativen Kapazitäten um rund 30 Prozent. Deutschland liegt im internationalen Vergleich der Größe seines Fußabdrucks auf Rang 30. Den größten Fußabdruck haben die USA und China.

Monitoring der klimabedingten Veränderungen terrestrischer und mariner Ökosysteme in der Maxwell Bay (Antarktis)

Die Antarktis sowie das umgebende Südpolarmeer unterliegen einem zunehmenden Druck durch kumulative Auswirkungen von Klimaveränderungen, Verschmutzung, Fischerei, Tourismus sowie einer Vielzahl weiterer menschlicher Aktivitäten. Diese Veränderungen bergen ein hohes Risiko sowohl für die lokalen polaren Ökosysteme als auch für die Regulation des globalen Klimas sowie durch einen globalen Anstieg des Meeresspiegels. Somit dienen langfristige Monitoringprogramme zur Beurteilung des Zustands von Ökosystemen sowie zur Erstellung von Prognosen für zukünftige Entwicklungen. Die Fildes-Region im Südwesten King George Islands (South Shetland Islands, Maritime Antarktis), bestehend aus der Fildes Peninsula, Ardley Island sowie mehreren vorgelagerten Inseln, gehört zu den größten eisfreien Arealen der Maritimen Antarktis. Im Rahmen der Fortsetzung eines in den 1980er Jahren begonnenen Langzeitmonitorings wurde während der Sommermonate (Dezember, Januar, Februar) der Saisons 2018/19 und 2019/20 die Erfassung der lokalen Brutvogel- und Robbenbestände durchgeführt und durch einzelne Zähldaten der Saison 2020/21 ergänzt. Die vorliegende Studie präsentiert die gewonnenen Ergebnisse, einschließlich der Bestandsentwicklung der heimischen Brutvögel. Hierbei zeigten einige Arten im Langzeitvergleich stabile Bestände (Braune Skuas, Südpolarskuas) oder eine deutliche Zunahme (Eselspinguin, Südlicher Riesensturmvogel). Andere Arten verzeichneten dagegen deutliche Rückgänge der Brutpaarzahlen (Adéliepinguin, Zügelpinguin, Antarktisseeschwalbe, Dominikanermöwe) bis hin zu einem fast völligen Verschwinden aus dem Brutgebiet (Kapsturmvogel). Daneben wurde die Zahl der Robben an ihren Ruheplätzen erfasst sowie die Verbreitung aller Wurfplätze in der Fildes-Region dargestellt. Weiterhin wurden Daten zum Brutvogelbestand in ausgewählten Bereichen der Maxwell Bay ergänzt. Ferner wurde die schnelle Ausbreitung der Antarktischen Schmiele mit Hilfe einer vervollständigten Wiederholungskartierung dokumentiert. Die Dokumentation von Gletscherrückzugsgebieten ausgewählter Bereiche der Maxwell Bay wurde anhand von Satellitenbildern aktualisiert und in Bezug zur regionalen klimatischen Entwicklung betrachtet. Weiterhin wird auf die Verbreitung und Menge von angespültem Meeresmüll in der Fildes-Region sowie auf Einflüsse von anthropogenem Material auf Seevögel eingegangen. Zusätzlich werden die aktuellen Kenntnisse über alle eingeschleppten, nicht-heimischen Arten im Untersuchungsgebiet sowie der weitere Forschungsbedarf dargestellt. Quelle: Forschungsbericht

Analyse der Maßnahmen zur Umsetzung von SDG 15 auf EU-Ebene

Das Projekt "Analyse der Maßnahmen zur Umsetzung von SDG 15 auf EU-Ebene" wird vom Umweltbundesamt gefördert und von Umweltbundesamt durchgeführt. Die Grundlage für Leben auf der Erde sind intakte Ökosysteme. Daher stellt die Umsetzung von SDG 15 'Leben an Land' eines der zentralen Ziele der Agenda 2030 für nachhaltige Entwicklung auf EU-Ebene dar. Aktuelle Bestandsaufnahmen (z.B. Eurostat 2020) zeigen, dass die EU in den letzten 5 Jahren nur moderate Fortschritte bei der Umsetzung von SDG 15 erzielt hat und so ist der Zustand der Ökosysteme sowie der Biodiversität in der EU besorgniserregend. Die EU-Mitgliedsstaaten sind derzeit noch weit davon entfernt, ihre hier gesteckten Ziele zu erreichen. Eines der Ziele des 'European Green Deal' der Europäischen Kommission ist der Erhalt und die Wiederherstellung von Ökosystemen und Biodiversität. Vor diesem Hintergrund wurden eine Reihe von Strategien angekündigt oder bereits veröffentlicht, welche einen Beitrag zur Erreichung von SDG 15 leisten sollen, wie z.B. die 'EU-Biodiversitätsstrategie für 2030', die 'Vom Hof auf den Tisch'-Strategie, oder die neue 'EU-Forststrategie' oder die Aktualisierung der EU-Bodenschutzstrategie. Andere Maßnahmen, wie die Gemeinsame Agrarpolitik der EU, stehen diesem Ziel eher entgegen). Inwieweit die EU die Umsetzung von SDG 15 auch in den Mittelpunkt ihrer Green Recovery Programme stellt (sowohl in Bezug auf Maßnahmen innerhalb der EU als auch innerhalb ihrer weltweiten Wertschöpfungsketten), ist derzeit noch offen. Mit diesem Vorhaben sollen die unterschiedlichen und sich teilweise widersprechenden Ziele, Strategien, und Maßnahmen, Instrumente und Indikatoren auf EU-Ebene untersucht werden und Ansatzpunkte für eine kohärente und wirksame Umsetzung der Maßnahmen zur Erreichung von SDG 15 bis 2030 identifiziert werden. Neben der Analyse der Strategien und Maßnahmen sollen mit Hilfe eines Stakeholder-Mappings zunächst relevante Akteursgruppen in der EU identifiziert werden. Durch Leitfadeninterviews und Workshops soll untersucht werden, welche Akteure welche Maßnahmen zur Umsetzung von SDG 15 auf vers. Ebenen erfolgreich durchführen.

Greenhouse-gas budget of soils under changing climate and land use (BurnOut) - COST 639

Das Projekt "Greenhouse-gas budget of soils under changing climate and land use (BurnOut) - COST 639" wird vom Umweltbundesamt gefördert und von Hochschule Weihenstephan-Triesdorf, Zentrum für Forschung und Wissenstransfer, Institut für Ökologie und Landschaft durchgeführt. Carbon (C) stored in soils represents the largest terrestrial organic carbon (C) pool. The biogeochemical cycles of C and nitrogen (N) are closely interwoven. Although the discussion on climate change focuses on CO2, the coupled cycling of C and N deserves equally much attention. As a result of mineralization processes, both elements are liberated from soil organic matter and can be lost from the soil via the aqueous or the gaseous phase. Both C and N occur in terrestrial ecosystems in several chemical forms and are potentially emitted as greenhouse gases (GHG). On the contrary, soils can act as a strong sink for GHGs. Considerable uncertainty exists regarding the sink strength of soils under different forms of land-use, especially under future climate conditions and in regimes of ecosystem disturbances, that are typical for particular regions. Due to the significance of the GHG exchange between the atmosphere and soils, C changes in terrestrial ecosystem pools are included in international treaties (Kyoto Protocol, UNFCCC). Objectives and benefits: The main objective of the Action is (i) the improved understanding of the management of greenhouse gas emissions from European soils under different forms of land-use and in particular disturbance regimes, (ii) the identification of hot spots of greenhouse gas emissions from soils, (iii) the identification of soil and site conditions that are vulnerable to GHG emissions, (iv) the development of an advanced reporting concept across different forms of land use and land-use changes, (v) the delivery and communication policy relevant GHG reporting concepts, so as (vi) the improvement of the communication between soil C experts. The Action aims to identify gaps in previous projects such as the response of carbon and nitrogen pools in soils under typical regimes of ecosystem disturbances and land-use change. To achieve our objectives, we will establish a communication platform between experts for different forms of land use, modellers and statisticians, and the contributors to the existing framework of greenhouse gas reporting.

Analyse der Maßnahmen zur Umsetzung von SDG 15 auf EU-Ebene

Das Projekt "Analyse der Maßnahmen zur Umsetzung von SDG 15 auf EU-Ebene" wird vom Umweltbundesamt gefördert und von Umweltbundesamt durchgeführt. Die Grundlage für Leben auf der Erde sind intakte Ökosysteme. Daher stellt die Umsetzung von SDG 15 'Leben an Land' eines der zentralen Ziele der Agenda 2030 für nachhaltige Entwicklung auf EU-Ebene dar. Aktuelle Bestandsaufnahmen (z.B. Eurostat 2020) zeigen , dass die EU in den letzten 5 Jahren nur moderate Fortschritte bei der Umsetzung von SDG 15 erzielt hat und so ist der Zustand der Ökosysteme sowie der Biodiversität in der EU besorgniserregend. Die EU-Mitgliedsstaaten sind derzeit noch weit davon entfernt, ihre hier gesteckten Ziele zu erreichen. Eines der Ziele des 'European Green Deal' der Europäischen Kommission ist der Erhalt und die Wiederherstellung von Ökosystemen und Biodiversität. Vor diesem Hintergrund wurden eine Reihe von Strategien angekündigt oder bereits veröffentlicht, welche einen Beitrag zur Erreichung von SDG 15 leisten sollen, wie z.B. die 'EU-Biodiversitätsstrategie für 2030', die 'Vom Hof auf den Tisch'-Strategie, oder die neue 'EU-Forststrategie' oder die Aktualisierung der EU-Bodenschutzstrategie. Andere Maßnahmen, wie die Gemeinsame Agrarpolitik der EU, stehen diesem Ziel eher entgegen). Inwieweit die EU die Umsetzung von SDG 15 auch in den Mittelpunkt ihrer Green Recovery Programme stellt (sowohl in Bezug auf Maßnahmen innerhalb der EU als auch innerhalb ihrer weltweiten Wertschöpfungsketten), ist derzeit noch offen. Mit diesem Vorhaben sollen die unterschiedlichen und sich teilweise widersprechenden Ziele, Strategien, und Maßnahmen, Instrumente und Indikatoren auf EU-Ebene untersucht werden und Ansatzpunkte für eine kohärente und wirksame Umsetzung der Maßnahmen zur Erreichung von SDG 15 bis 2030 identifiziert werden. Neben der Analyse der Strategien und Maßnahmen sollen mit Hilfe eines Stakeholder-Mappings zunächst relevante Akteursgruppen in der EU identifiziert werden. Durch Leitfadeninterviews und Workshops soll untersucht werden, welche Akteure welche Maßnahmen zur Umsetzung von SDG 15 auf vers. Ebenen erfolgreich durchführen.

Tracing the Fate of Contaminants in a Model Ecosystem

Das Projekt "Tracing the Fate of Contaminants in a Model Ecosystem" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Physikalische Chemie durchgeführt. Scientists from the Palestinian authority, Israel and Germany, all involved in different aspects of analytical research, have joined in order to conduct an environmental study, which aims to understand the fate of selected contaminants in a model ecosystem. For this purpose, two typical terrestrial sites in the Middle East, one in the Palestinian authority and the other in Israel, have been selected, comprising a partially polluted area and a natural reserve as a reference. In these areas, the fate (chemical and physical transformations) of typical pollutants such as heavy metals (Pb, Cu, Zn, Cd, Fe), metalloids (As, Sn, Sb), organic dyes and air contaminants (O3, NOx, SO2) will be studied. This will also involve the determination of all the environmental conditions for the chemical transformation, which should shed some light on the dynamics of the ecosystems. At the same time novel inexpensive sensors and analytical procedures will be developed, which are necessary for the analysis of contaminants in this area. The goals will be accomplished by combined efforts of all partners.

Küstengewässer Biologische Qualitätskomponenten Makrophyten Nordsee: Makrophyten Seegras (SG)

Seegräser bilden produktive Lebensräume für eine Vielfalt von Lebewesen in den Flachwasserbereichen der Küsten- und Übergangsgewässer. In dichtbewachsenen Seegraswiesen schützen sie das Sediment vor Erosion und fördern die Ablagerung von Schwebstoffen. Sie filtern Nährstoffe aus dem Wasser und speisen sie auf diese Weise in das Nahrungsnetz ein. Auf den Seegraspflanzen können epiphytische Algen wachsen, die ihrerseits von Schnecken und anderen Wirbellosen abgeweidet werden. Zwischen den Blättern finden kleinere Tiere, wie z. B. juvenile Muscheln, Krebstiere und Fische Schutz. Die heutzutage verschwundenen sublitoralen Seegraswiesen wurden von verschiedenen Fischarten als Laichsubstrat und Kinderstube genutzt. Für Wasservögel wie Ringelgänse und Pfeifenten bilden Seegraswiesen eine Nahrungsquelle. Gegenwärtig sind die meisten Seegrasbestände des Wattenmeeres in der mittleren bis oberen Gezeitenzone entlang der Leeseiten der Inseln oder hoher Sandbänke zu finden sowie in geschützten Bereichen entlang der Festlandküste. Von den zwei in der Nordsee vorkommenden Seegrasarten der Gattung Zostera kommt das kleinere und sehr schmalblättrige Zwergseegras ( Zostera noltii ) am häufigsten vor. Auf geeigneten Flächen bildet es mehr oder weniger dichte Wiesen aus, die aufgrund der meist mehrjährigen Rhizome sehr lagestabil sein können. Das Zwergseegras wird häufig begleitet vom Echten Seegras ( Zostera marina ), das zurzeit nur mit seiner schmalblättrigen Wuchsform im Gezeitenbereich des Wattenmeers vertreten ist. Diese einjährige Varietät pflanzt sich überwiegend über Samen fort, und ihr Vorkommen ist daher unbeständiger. Eine mehrjährige, breitblättrige Form des Echten Seegrases war bis Ende der 1920er Jahre im Bereich der Niedrigwasserlinie und darunter verbreitet. Infolge eines epidemischen Seegrassterbens in den frühen 1930er Jahren sind diese Bestände erloschen und konnten sich bislang nicht wieder regenerieren. Verursacht wurde das Seegrassterben vermutlich durch anormal bewölkte und/oder warme Jahre und den Befall mit einem Schleimpilz ( Labyrinthula zosterae ). Etwa seit den 1950er bis in die 1990er Jahren erlitten auch die im Gezeitenbereich (Eulitoral) verbleibenden Seegrasbestände deutliche Rückgänge, die vermutlich auf menschliche Einwirkungen zurückzuführen sind ‒ zunächst im südlichen (niederländischen), später im zentralen Niedersächsischen Wattenmeer. Auch im nördlichen Wattenmeer wurden seit den 1980er bis Mitte der 1990er Jahre Bestandsrückgänge beobachtet. Als die übergreifenden Faktoren, die sich auf den Zustand der Seegräser im Wattenmeer auswirken, gelten Eutrophierung und Hydrodynamik: Seegräser sind für ihr Wachstum auf lagestabile Sedimente angewiesen und reagieren anfällig auf Sedimentumlagerungen, die z. B. durch Meeresströmungen, Wellenschlag und Sturmfluten verursacht werden. Daher gehören mechanische Störungen durch Erosion oder vermehrte Sedimentation z.B. durch Veränderungen der Hydrodynamik, Baumkurrenfischerei oder Baggermaßnahmen zu den bedeutenden Stressoren. Auch Landgewinnungs- und Unterhaltungsmaßnahmen an den äußeren Salzwiesen, die die Sedimentationsraten erhöhen, können einen negativen Effekt haben. Weiterhin sind Seegräser an niedrige Nährstoffkonzentrationen angepasst und werden durch die Eutrophierung der Gewässer auf unterschiedliche Weise geschädigt. Zum einen durch direkte toxische Wirkungen hoher Ammonium- oder Nitratkonzentrationen, zum anderen indirekt durch gesteigerten Bewuchs mit Kleinalgen (Epiphyten) oder Überdeckung durch Grünalgen (Makroalgen), deren Entwicklung ebenfalls von der Nährstoffversorgung beeinflusst wird. Sowohl mechanische Störungen als auch die Folgen der Eutrophierung führen häufig zu einer Beeinträchtigung des Lichtklimas z. B. aufgrund erhöhter Trübung durch das Baggern und Verklappen von Sedimenten oder infolge dichter Phytoplanktonblüten. Dazu kommen Beeinträchtigungen durch Herbizide und andere Schadstoffe, den Verlust landnaher Habitate durch Baumaßnahmen des Küstenschutzes, regional verminderte landseitige Süßwasserabflüsse sowie Klimaveränderungen, den Anstieg des Meeresspiegels bei festgelegter Küstenlinie (coastal squeezing) und die globale Erwärmung. Vor diesem Hintergrund wirken außerdem Faktoren wie extreme Wetterereignisse (Sturmflut, Eisgang) und biotische Interaktionen mit Pflanzenfressern, Konkurrenten oder Krankheiten. Wegen der Kombinationswirkungen aller Einflussfaktoren, die sich teils verstärken, aber auch aufheben können, sind die genauen Ursachen lokaler Bestandsveränderungen oft nur unscharf zu benennen. Dennoch gelten Seegraswiesen insgesamt als guter Indikator für den Zustand des Ökosystems, weil sie ein wichtiger Zeiger für Eutrophierungseffekte, hydromorphologische und weitere Belastungen sind, der schnell und gut sichtbar auf veränderte Umweltbedingungen reagiert. Im Hinblick auf die europäische Wasserrahmenrichtlinie (WRRL) gilt daher der Erhaltungszustand der Seegräser im Gezeitenbereich als wichtiger Indikator für die Auswirkungen der Eutrophierung in Küsten- und Übergangsgewässern, mindestens alle sechs Jahre überwacht wird. Grundsätzlich ist für eine gute ökologische Qualität im Wattenmeer die Anwesenheit beider Arten, Zostera marina und Zostera noltii, erforderlich, während der Flächenanteil der Seegraswiesen im Gezeitenbereich als gebietsspezifisch für Teilbereiche des Wattenmeeres gilt. Im Sublitoral, dem ständig wasserbedeckten Bereich des Wattenmeeres, kommt Seegras nach derzeitigem Kenntnisstand heute nicht mehr oder höchstens vereinzelt vor. Das Fehlen des Seegrases im Sublitoral geht bislang nicht in die Bewertung nach WRRL ein. Zur Bewertung der Seegräser für den Bereich der Nordsee steht das Verfahren " Assessment tool for intertidal seagrass in coastal and transitional waters - Bewertungsinstrument für intertidales Seegras in Küsten- und Übergangsgewässern (SG) “ ( Kolbe 2006 ) zur Verfügung.

Quantifying the Carbon budget in Northern Russia: past, present and future - CARBO-NORTH

Das Projekt "Quantifying the Carbon budget in Northern Russia: past, present and future - CARBO-NORTH" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung - Fachbereich Klimawissenschaften durchgeführt. CARBO-North aims at quantifying the carbon budget in Northern Russia across temporal and spatial scales. Activities address rates of ecosystem change, effects on the carbon budget (radiative forcing), and global climate and policy implications (Kyoto). Recent research on the impacts of climate change in high latitude regions has mostly assessed the equilibrium response of ecosystems, for instance what is the potential location of the arctic treeline or the southern limit of permafrost under conditions of global warming. However, transient responses are of much greater importance from a policy perspective. How quickly will the arctic treeline migrate? How quickly will permafrost thaw? How quickly will enhanced soil organic matter decay result in increased greenhouse gas emissions and leaching? Different time lags in these processes will cause significant deviations from equilibrium response. Proposed field study areas in Northeast European Russia are characterized by gradual lowland transitions in vegetation and permafrost conditions. Dedicated climate models will provide requested variables and time slices as input to ecosystem studies. Analyses will be conducted to assess the sensitivity of climate model output to a suite of land cover, ground and permafrost schemes. Proxydata will be used to evaluate rates of ecosystem change under past climatic changes. The present environment will be studied from the plot to landscape scales with a variety of approaches, including assessments of human-induced and natural disturbances. Detailed monitoring and mapping of vegetation, soil and permafrost will provide input for process-oriented studies (treeline patch dynamics; tundra/forest/river carbon fluxes; ground subsidence, etc) and GIS-based upscaling to regional levels. Results are used for integrated ecosystem modeling, calculation of net radiative effects and assessment of the sensitivity of climate model predictions to transient environmental changes. Prime Contractor: University Stockholm, Stockholm; Sweden.

Long-term Driving Factors & Land Use Policies in Europe

Das Projekt "Long-term Driving Factors & Land Use Policies in Europe" wird vom Umweltbundesamt gefördert und von Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg durchgeführt. The basic and unifying question of this project is to what extent and how ecosystems maintain their resilience towards the different impacting factors (i.e. climate change). This again impinges on biodiversity conservation strategies. Of special interest hereby is how different/similar ecosystems and species react in different vegetation zones and eco-regions under different climatic conditions and disturbance/driving factors? What are the thresholds of the resilience of ecosystems under increasing temperatures due to climatic change, and what will be the response of communities that have not experienced such disturbances in the past? This project will cover the whole northern boreal region using pristine Russian forests as a reference. It would provide a careful evaluation of this long geographical, political and historical gradient of different land-use politics and their biodiversity effects from Russia via the Baltic countries to central Europa. This would be helpful in understanding and predicting the future changes and choosing management strategies. Although there is a great deal of interest in the biological diversity in species/ecosystem and genetic level, it is only recently that researchers have started to investigate the processes that exert parallel influences on these different levels of biodiversity. Policy aimed at conserving biodiversity has focused on species diversity. Loss of genetic diversity, however, can affect population resistance, evolutionary genetic potential, and population fitness. Species diversity and genetic diversity may be correlated as a result of processes acting in parallel at the two levels. However, no intensive studies have been conducted so far to predict the conditions under which different relationships between species diversity and genetic diversity might arise and therefore when one level of diversity may be predicted using the other. In this project all these levels of biodiversity will be included in a interdisciplinated study. This project will address the integration of data depicting long-term landscape history with present day data (such as statistical, GIS and Remote Sensing data, etc.) and models predicting future developments.

Wieviel Müll liegt am Meeresboden?

Kurzbeschreibung Liegen die Getränkedosen am Strand, oder schwimmen die Plastiktüten auf der Meeresoberflächen, dann sind sie für jeden zu sehen. Aber der größte Teil des Mülls im Meer sinkt irgendwann zu Boden und entzieht sich den Blicken. Wieviel und welche Art von Müll dort liegt, untersucht das Thünen-Institut in seinen Fischereifängen. Hintergrund und Zielsetzung Müll im Meer ist in jüngster Zeit zu einem Hauptanliegen von Politik und Öffentlichkeit geworden. Weltweit erreichen enorme Mengen von festem Müllmaterial die Ozeane. Dieser Müll kommt sowohl von Quellen auf dem Land als auch von See. Es wird angenommen, dass die  Mengen von Müll am Meeresgrund mit der Zeit ansteigen, denn die Weltbevölkerung und die industrielle Produktion nehmen ebenfalls zu. In Europa wurde Meeresmüll als we­sentlicher Gefährdungsfaktor für die marine Umwelt erkannt und als einer von 11 qualitativen De­skriptoren für den „Guten Umweltzustand“ in die Marine Meeresstrategie Rahmenrichtlinie ( MSRL ) aufgenommen. Die MSRL sieht die Etablierung von Monitoringprogrammen vor, um den Zustand mariner Ökosysteme regelmäßig zu erheben und zu bewer­ten. Studien zu Meeresmüll verwenden oft ein international abgestimmtes Protokoll ( z.B. ICES International Bottom Trawl Survey, IBTS ), um den gesammelten Makromüll (>2,5 cm) stan­dardi­siert zu erfassen. Das Ziel dieses Projektes ist die Erfassung von Menge und Zusammensetzung von Müll am Meeresboden, zur (1) Beurteilung des Ökosystemzustands und (2) zum besseren Verständnis der Mülldynamik im Meer.

1 2 3 4 57 8 9