API src

Found 36 results.

Related terms

Biomasse: Beste Ökobilanz bei Nutzungskaskade

Hemmnisse für stoffliche Biomassenutzung abbauen Bioenergie, insbesondere Biokraftstoffe, werden kontrovers diskutiert – Bietet die stoffliche Nutzung von Biomasse in Form von Baumaterialien, Biokunststoffen oder Schmierstoffen also eine bessere Alternative? Diese Frage wurde jetzt erstmalig umfassend in einem Forschungsprojekt im Auftrag des Umweltbundesamtes (UBA) untersucht. Die Ergebnisse zeigen: Werden nachwachsende Rohstoffe vor einer energetischen Nutzung stofflich genutzt, lassen sich fossile Rohstoffe einsparen, Treibhausgasemissionen vermindern und die Wertschöpfung steigern. So soll Holz in einer längeren Verwertungskette zuerst als Baumaterial oder für die Holzwerkstoffindustrie im Anschluss zum Beispiel für Möbel genutzt werden und erst danach als Holzpellet für die Energiegewinnung. Diese Kaskadennutzung sollte in den Mittelpunkt einer langfristigen Strategie für eine ressourceneffiziente und nachhaltige Biomassenutzung gestellt werden. Holz, Stärke aus Mais und Weizen, Pflanzenöle und Zucker zählen zu den wichtigsten stofflich genutzten biogenen Rohstoffen. Eine verstärkte stoffliche Nutzung nachwachsender Rohstoffe in Deutschland hätte erhebliche ökologische und ökonomische Potentiale  hinsichtlich  Treibhausgasminderung, Wertschöpfung und Beschäftigung, so die Projektergebnisse aus den Szenarien. In diesen wurde angenommen, dass die in Deutschland bisher energetisch genutzte ⁠ Biomasse ⁠ in Gänze stofflich genutzt wird. Ökobilanzen zeigen, dass die stoffliche Nutzung von Biomasse viele Parallelen zur energetischen Biomassenutzung hat, allerdings ist die Kaskadennutzung des Rohstoffs, bei der sich die energetische an die stoffliche Nutzung anschließt, einer rein energetischen Nutzung weit überlegen. Auch ökonomisch hat die stoffliche Nutzung Vorteile. Sie schafft, bezogen auf die gleiche Menge an Biomasse, die fünf- bis zehnfache Bruttowertschöpfung und ebensolche Beschäftigungseffekte. Hauptgrund sind die meist langen und komplexen Wertschöpfungsketten. Die stoffliche Biomassenutzung wird derzeit nicht finanziell gefördert.  Gegenüber der energetischen Biomassenutzung ist sie deshalb kaum wettbewerbsfähig. Verschiedenste Programme und gesetzliche Regelungen begünstigen den Anbau von Energiepflanzen, deren Verarbeitung und direkten Einsatz zur Energiegewinnung – unter anderem durch Steuervorteile. Das steigert die Nachfrage nach Biomasse und folglich deren Preis, was wiederum höhere Pacht- und Bodenpreise nach sich zieht. Eine ökologisch und ökonomisch sinnvolle Kaskadennutzung wird so verhindert. Bei dieser würde Holz in einer längeren Recyclingkette idealerweise zuerst als Baumaterial, dann für Spanplatten, im Anschluss für Möbel und danach für kleine Möbel wie Regale genutzt werden.  Erst dann, wenn es sich nicht mehr für Holzprodukte eignet, kann es auch für die Energiegewinnung eingesetzt werden. ⁠ UBA ⁠-Vizepräsident Thomas Holzmann: „Die beste Form Biomasse einzusetzen, ist die Kaskadennutzung.  Holz oder andere pflanzliche Stoffe sollen so lange wie möglich stofflich genutzt werden, für Bauholz oder Möbel und anschließend für neue Produkte recycelt werden. Erst die Rest- und Abfallstoffe dürfen für die Energiegewinnung eingesetzt werden. Das Umweltbundesamt empfiehlt daher, vergleichbare Rahmenbedingungen für stoffliche und energetische Biomassenutzung zu schaffen und den Ausbau der Kaskadennutzung voranzutreiben. Das ist die optimale, ressourceneffizienteste Verwertung der Biomasse.“ Die  bestehenden Wettbewerbsverzerrungen zuungunsten der stofflichen Nutzung von Biomasse lassen sich durch unterschiedliche Maßnahmen verringern. Beispielsweise sollte in der Erneuerbaren-Energie-Richtlinie der EU (RED) und im Erneuerbaren-Energien-Gesetz (EEG) die Kaskadennutzung deutlich besser gestellt werden als die direkte energetische Nutzung frischer Biomasse. Ein weiteres Beispiel ist das Marktanreizprogramm (MAP) für Erneuerbare Energien, das die Wärmeerzeugung durch Biomasseanlagen fördert. Würde diese Förderung schrittweise gekürzt werden und würde dadurch die Nachfrage nach Scheitholz-, Hackschnitzel- und Pelletheizungen sinken, ließe sich die Konkurrenz um Holz zwischen dem stofflichen und energetischen Sektor deutlich entschärfen. Um das zu erreichen, sollte auch die Umsatzsteuer für Brennholz erhöht werden. Sie liegt derzeit bei einem reduzierten Satz  von sieben Prozent. In Deutschland werden derzeit etwa 90 Millionen Tonnen an nachwachsenden Rohstoffen genutzt. Knapp die Hälfte davon (52 %) wird stofflich genutzt, die andere Hälfte (48 %) energetisch. Mengenmäßig ist Holz der wichtigste nachwachsende Rohstoff. Es wird in der Säge- und Holzwerkstoffindustrie eingesetzt, als Bauholz für Gebäude oder die Möbelproduktion sowie in der Papier- und Zellstoffindustrie. Die Oleochemie und die chemische Industrie verarbeiten Pflanzenöle, z.B. zu Farben, Lacken und zu Schmierstoffen sowie stärke- und zuckerhaltige Pflanzen zu Tensiden und biobasierten Kunststoffen. Die Anbaufläche für nachwachsende Rohstoffen, die stofflich genutzt werden, beläuft sich weltweit auf 2,15 Milliarden Hektar. Am meisten wird Holz angebaut, die Stärkepflanzen Mais und Weizen, die Ölpflanzen Ölpalme und Kokosnuss, das Zuckerrohr sowie Baumwolle und Naturkautschuk. Weitere Informationen: Das Forschungsprojekt „Ökologische Innovationspolitik – Mehr Ressourceneffizienz und ⁠ Klimaschutz ⁠ durch nachhaltige stoffliche Nutzungen von Biomasse“ wurde im Auftrag des Umweltbundesamtes  durchgeführt und mit Mitteln des Bundesumweltministeriums (⁠ BMUB ⁠) gefördert. Das Projekt wurde unter Federführung der nova-Institut GmbH, Hürth, in Kooperation mit weiteren Partnern von 2010 bis 2013 bearbeitet. F+E Ökologische Innovationspolitik – Mehr Ressourceneffizienz und Klimaschutz durch nachhaltige stoffliche Nutzungen von Biomasse (FKZ 37 1093 109). Der Forschungsbericht kann unter der Kennnummer 001865 aus der Bibliothek des Umweltbundesamtes ausgeliehen werden.

IUCN Weltnaturschutzkongress auf Hawaii

Der IUCN Weltnaturschutzkongress fand vom 1. bis 10. September 2016 auf Hawaii statt. Der Kongress endete mit den "Hawaii-Vereinbarungen". Die Delegierten einigten sich unter anderem auf ein striktes Verbot des nationalen Elfenbeinhandels. Darüber hinaus soll die besonders in Südafrika verbreitete Zucht von Löwen in Gefangenschaft, die dann als leichte Beute für die Jagd freigegeben werden, die sogenannten "Gatterjagd" ab 2020 verboten werden. Des Weiteren stimmte die Konferenz für ein Verbot der Waljagd zu wissenschaftlichen Zwecken. Die IUCN-Mitglieder forderten außerdem bindende Gesetzesregelungen für den Schutz der hohen See: bis 2030 sollen 30 Prozent aller Meeresgebiete außerhalb von Hoheitsgebieten der Länder unter Schutz gestellt werden. Auch Urwälder und intakte Waldlandschaften sollen zukünftig besser geschützt werden. Die IUCN-Mitglieder wollen sich außerdem dafür einsetzen, dass noch mehr Gebiete zu "no-go-areas" erklärt werden, in denen schädliche industrielle Tätigkeiten wie Bergbau, Öl- und Gasförderung oder Infrastrukturentwicklungen verboten sind. In einer weiteren Entscheidung betonten die IUCN-Mitglieder die Notwendigkeit, intakte Wälder und Ökosysteme vor der industriellen Nutzung als Palmölplantage zu schützen.

Studie belegt rapide Entwaldung Malaysias

Neue Satellitenaufnahmen zeigen, dass in Malaysia der tropische Regenwald mit einer Geschwindigkeit abgeholzt wird wie nirgendwo sonst in Asien. Das geht aus einer am 1. Februar 2011 in Amsterdam veröffentlichten Studie hervor. Demnach ist das Tempo der Entwaldung in Malaysia dreimal so hoch wie in ganz Asien zusammen - und in den Sumpfwäldern im südlichen Sarawak sei es sogar noch höher, heißt es in der von der in den Niederlande ansässigen Organisation Wetlands International erstellten Studie. In Sarawak, dem größten malaysischen Staat auf der Insel Borneo, würden jährlich zwei Prozent des Regenwaldes abgeholzt - in den vergangenen fünf Jahren seien es zehn Prozent der Waldfläche gewesen. In ganz Asien seien es in demselben Zeitraum 2,8 Prozent gewesen. Das meiste gerodete Land wird zu Palmöl-Plantagen, hieß es weiter. Malaysia und Indonesien sind die größten Palmöl-Produzenten der Welt.

Assessing the direct and induced impacts of biofuel value chain activities at small-scale and village level for domestic and export biofuel value chains

Das Projekt "Assessing the direct and induced impacts of biofuel value chain activities at small-scale and village level for domestic and export biofuel value chains" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Umweltökonomik und Welthandel (IUW) durchgeführt. The objective of this project is to analyze small-scale farmers integration into international and domestic biofuel value chains and to assess its impacts on village economy and the environment. The specific objectives are - 1. To examine the major determinants of producers decision to adopt the production of oil plants (palm oil, Jatropha curcas). 2. To identify the key attributes of small-scale farmers integration into domestic and international bioenergy value chains. 3. To measure the direct impact of bioenergy feedstock production on small-scale producers net-income. 4. To assess the induced effects of bioenergy feedstock production on the village economy. 5. To compare the institutional arrangement and direct / induced impacts between international and national bioenergy value chains. Methodology for this project consists of three parts: (1) Village social accounting matrix (SAM) constructed from a comprehensive Household Survey, (2) Village computable equilibrium model based on the village SAM, (3) Triangulation: econometric models will be used for quantitative analysis and supplemented with qualitative analysis.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT durchgeführt. Palmöl ist das weltweit kostengünstigste und wichtigste Pflanzenöl, wobei die Umstände seiner Produktion sehr problematisch sind. In großem Maße verdrängen Monokulturen tropische Wälder und es entstehen enorme Mengen flüssiger und solider Abfälle. Ein Abfallprodukt sind die abgeernteten Fruchtstände der Ölpalmen(Empty Fruit Bunches, EFB) wovon allein in Malaysia 20 Mio. t pro Jahr anfallen. Pathwayy-EFB entwickelt als interdisziplinäres transnationales Verbundprojekt einen Prozess zur Herstellung monomerer Zucker aus dem Cellulose-Bestandteil der EFB. Diese können dann zu Bio-Kraftstoffen oder Bio-Chemikalien der zweiten Generation weiterverarbeitet werden. Auf dem Gelände einer Palmöl-Mühle wird dazu im ersten Schritt EFB vorbehandelt. Dadurch wird der Cellulose-Bestandteil der Biomasse für einen enzymatischen Angriff verfügbar. Im zweiten Schritt wird die Cellulose dann mithilfe sogenannter Cellulase-Enzyme in seine Zucker-Bestandteile aufgespalten. Anstelle freier, löslicher Enzyme (Marktstandard) kommt eine bakterielle Cell Surface Display Technologie zum Einsatz, welche die Wiederverwendbarkeit der Enzyme ermöglicht. Die Autodisplay Biotech GmbH wird den hierzu notwendigen Ganzzellkatalysator entwickeln, während die Biomassevorbehandlung von der Universiti Kebangsaan Malaysia erarbeitet wird. Basierend auf diesen Ergebnissen erfolgt hierzu bei Fraunhofer UMSICHT die Prozessentwicklung im Labormaßstab. Der Fokus bei der Entwicklung eines Verfahrens liegt dabei auf der Produktabtrennung und -aufbereitung sowie der gleichzeitigen Katalysatorrückgewinnung und -rückführung. Basierend auf den erzielten Ergebnissen erfolgt daran anschließend die Umsetzung im Pilotmaßstab. Parallel zu diesen Arbeiten werden Untersuchungen zu Wirtschaftlichkeit, Nachhaltigkeit und sozialen Auswirkungen ebenfalls von Fraunhofer UMSICHT durchgeführt.

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von GEA Westfalia Separator Group GmbH durchgeführt. Ziel ist es, ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen. Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösungsmittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierter Materialien) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozeßschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozesschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs-und Industriepartner in Deutschland.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Autodisplay Biotech GmbH durchgeführt. Palmöl ist das weltweit kostengünstigste und wichtigste Pflanzenöl, wobei die Umstände seiner Produktion sehr problembelastet sind. In großem Maße verdrängen Monokulturen tropische Wälder und es entstehen enorme Mengen flüssiger und solider Abfälle. Ein Abfallprodukt sind die abgeernteten Fruchtstände der Ölpalmen (Empty Fruit Bunches, EFB), wovon allein in Malaysia 20 Mio. t pro Jahr anfallen. Pathway-EFB entwickelt als interdisziplinäres, transnationales Verbundprojekt einen Prozess zur Herstellung monomerer Zucker aus dem Cellulose-Bestandteil der EFB. Diese können dann zu Bio-Kraftstoffen oder Bio-Chemikalien der zweiten Generation weiterverarbeitet werden. Auf dem Gelände einer Palmöl-Mühle wird dazu im ersten Schritt EFB vorbehandelt. Dadurch wird der Cellulose-Bestandteil der Biomasse für einen enzymatischen Angriff verfügbar. Im zweiten Schritt wird die Cellulose dann mithilfe so genannter Cellulase-Enzyme in seine Zucker-Bestandteile aufgespalten. Anstelle freier, löslicher Enzyme (Marktstandard) kommt eine bakterielle Cell Surface Display Technologie zum Einsatz, welche die Wiederverwendbarkeit der Enzyme ermöglicht. Die Autodisplay Biotech GmbH wird Ganzzellkatalysatoren konstruieren und diejenigen auswählen welche die höchste Aktivität gegenüber dem Substrat EFB aufweisen. Die Enzyme werden hinsichtlich ihrer Eigenschaften evolutiv weiterentwickelt und die Produktion der resultierenden Ganzzellkatalysatoren wird optimiert.

Improvement of oil palm wood by bio resin application

Das Projekt "Improvement of oil palm wood by bio resin application" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Forstwissenschaften, Institut für Forstnutzung und Forsttechnik, Professur für Forstnutzung durchgeführt. Reinforcement of oil palm wood by using Bioresin to improve its physical, mechanical and machinery properties. Concerning the utilization of oil palm wood, which is available in large number throughout the year, especially when the mature plants has reached its economic life span (approx. 25 years). Normally, this mature plant should be replanting. According to the projection of oil palm plantation development in Indonesia, there are more than 16 million cubic meter of this bulky material starting 2010. This large amount of biomass, if no real effort, will become a serious problem. Unfortunately, the current replanting method (push-felled) sounds risky and in several companies follow by burning method, which is really not solve problem, but creating the other serious problem, such as air pollution. The oil palm wood characteristics as a monocotyledons species is naturally quite different compare to the common wood (dicotyledonous). Originally the oil palm tree has various densities along the trunk and its density decreased linearly with trunk height and towards the centre of the trunk. Green oil palm trunk is also very susceptible to fungal and insect attack due to the high sugar and starch content. Hence, the utilization of this material is not fully utilized yet and still poses a serious environmental problem. Yet, compared to the various intensive researches and the economically important of the oil palm, processing technology and diversification of palm oil based products mainly from CPO and PKO, the oil palm solid waste, particularly the oil palm wood, has received relatively little research attention. This might be due to lack or insufficient the scientific information and Know-How of this material and might be also due to the difficulties of using with the OPT. Although several investigations have already conducted in the field of OPT, but a sufficient knowledge shall be achieved in order to design and establish the new tailor-made wood products based on oil palm wood. Hence, this study was directed to focus the characteristics of OPT including anatomical, physical, mechanical and machinery properties, and in order to use the OPT for structural purposes, the wood properties of OPT were improved and reinforced with Bioresin through the development of wood modification techniques.

Teilprojekt 4

Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von PlanET Biogastechnik GmbH durchgeführt. Ziel ist es ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, der Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen: Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösemittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierte Materialen) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozessschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozessschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs- und Industriepartner in Deutschland und in Indonesien.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT durchgeführt. Ziel ist es ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, der Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen: Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösemittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierte Materialen) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozessschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozessschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs- und Industriepartner in Deutschland und in Indonesien.

1 2 3 4