Das Projekt "The supercritical CO2 Heat Removal System (sCO2-HeRo)" wird vom Umweltbundesamt gefördert und von Universität Duisburg-Essen, Institut für Energie und Umweltverfahrenstechnik, Lehrstuhl für Strömungsmaschinen durchgeführt. Raising nuclear reactor safety to a higher level - The supercritical CO2 heat removal system - 'sCO2-HeRo. The 'supercritical CO2 heat removal system', sCO2-HeRo, safely, reliably and efficiently removes residual heat from nuclear fuel without the requirement of external power sources. This system therefore can be considered as an excellent backup cooling system for the reactor core or the spent fuel storage in the case of a station blackout and loss of ultimate heat sink. sCO2-HeRo is a very innovative reactor safety concept as it improves the safety of both currently operating and future BWRs and PWRs through a self-propellant, self-sustaining and self-launching, highly compact cooling system powered by an integrated Brayton-cycle using supercritical carbon dioxide. Since this system is powered by the decay heat itself, it provides new ways to deal with accidents that are beyond design. The sCO2-HeRo provides breakthrough options with scientific and practical maturity, which will be proven by means of numerical tools, like advanced CFD, and small-scale experiments to determine the performance of the components like a compact heat exchanger and a turbo-machine set. A demonstration unit of the sCO2-HeRo system will be installed in a unique glass model in order to demonstrate the maturity of the system. Finally, the potential of this system to deal with a range of different accident scenarios and beyond-design accidents will be shown with the help of the German nuclear code ATHLET.
Das Projekt "Teilprojekt: Fh IVV" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Verfahrenstechnik und Verpackung durchgeführt. Ziel dieses Vorhabens ist die Entwicklung eines neuartigen Verfahrens zur Herstellung einer aktiven Lebensmittelverpackungsfolie. Die Imprägnierung mittels überkritischem CO2 ermöglicht es, Kunststofffolien mit pflanzenbasierten Wirkstoffen antimikrobiell auszurüsten und somit auf toxische organische Lösungsmittel zu verzichten. Derartig funktionalisierte Verpackungen können dazu beitragen, die Sicherheit frischer, leicht verderblicher Lebensmittel zu erhöhen und deren Haltbarkeit zu verlängern. Der Prozess der Imprägnierung von Polymeren mit antimikrobiell aktiven Substanzen durch überkritisches CO2 ist neu im Bereich der Lebensmittelverpackungsfolien. Für dieses neuartige und nachhaltige Verfahren werden neben dem 'grünen' Lösungsmittel CO2 nur Substanzen natürlichen Ursprungs, wie Pflanzenextrakte oder darin vorkommende Einzelsubstanzen verwendet. Das Projekt leistet daher einen wertvollen Beitrag zu einer nachhaltigen und biobasierten Wirtschaft. Um die Projektziele zu erreichen, arbeitet ein internationales Team von chilenischen und deutschen Forschungs- und Industriepartnern eng zusammen. Es werden Pflanzenextrakte entwickelt und bezüglich ihrer antimikrobiellen Wirksamkeit, ihren sensorischen Eigenschaften und ihrer Verarbeitbarkeit bewertet. Parallel dazu wird der Imprägnierungsprozess im Labormaßstab etabliert und optimiert. Es wird der Einfluss unterschiedlicher Verfahrensparameter auf die chemischen, mechanischen und antimikrobiellen Eigenschaften der Folien untersucht. Dies bildet die Grundlage für das anschließende Scale-up auf den Industriemaßstab. Hierzu werden konventionelle Anlagen, welche normalerweise für die Extraktion mit überkritischen CO2 verwendet werden, herangezogen. Die so imprägnierten Verpackungsmaterialien werden erstmalig direkt am Lebensmittel auf ihre Wirksamkeit überprüft und ihr Einfluss auf die Qualität und die Haltbarkeit der Produkte untersucht. Die Anwendbarkeit wird zudem lebensmittel- und verpackungsrechtlich beurteilt.
Das Projekt "Modeling of two-phase flow processes in strongly heterogeneous porous media using multi-rate mass transfer approaches" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Strömungsmechanik und Umweltphysik im Bauwesen durchgeführt. Modelling of displacement of one fluid by another immiscible one and mass transfer between the phases is important for many geotechnical applications. An example is the injection of supercritical carbon dioxide into brine. To include the influence of heterogeneous structure that is not resolved by the numerical grid into modelling concepts is a challenge, in particular if parameter contrasts are high. In this proposal we want to derive up scaled model concepts for two-phase flow on large length scales, where we focus on the transition zone between displacing and displaced fluid (the mixing zone) during a displacement problem. The mixing zone is the critical zone, for example, for mass transfer of a dissolved component between the two phases. Based on the models that quantify the mixing zone we want in a second step to analyze the relation between mixing zone volume and interfacial area between the fluids. To derive such model concepts we want to apply multi-rate mass transfer modelling approaches that have been developed to describe solute transport in flow fields with mobile and stagnant flow zones in complexly structured and highly heterogeneous porous media. These approaches have been very successful for linear problems. We want to extend them to the non-linear problem two-phase flow problem. Project results: Immiscible two phase ï ‚ow processes in highly heterogeneous porous media, such as fractured rock, are important in many geotechnical applications, such as CO2 sequestration or oil recovery. In fractured rock classical modelling approaches are computationally intensive due to the strong contrast in the model parameters. In this project we derived upscaled two phase ï ‚ow models on the macroscale, where the detailed fracture network is no longer described. In fractured rock the fractures are related to fast ï ‚ow processes. Slow exchange of ï ‚uid takes place between the fractures and the rock matrix. For the upscaled model the fractured rock is divided into two zones. The fractures with the fast ï ‚ow processes are the mobile zone and the rock matrix with the slow ï ‚ow processes are the immobile zone. The upscaled ï ‚ow model describes ï ‚ow processes in the mobile zone only. The exchange processes between mobile and immobile zone are modelled with an additional sink-source term. This term is expanded in a way that the model becomes a multi-rate mass-transfer model for two-phase ï ‚ow. With this modelling approach we derived two upscaled models on the macroscale. The ï rst model is for oil recovery from fractured rock. This is an imbibition process, where oil as the nonwetting phase is displaced by water as the wetting phase. The ï ‚ow in the fracture network is dominated by ï ‚ow enforced by boundary conditions and the ï ‚ow in the rock matrix is dominated by capillary counter-current ï ‚ow. The second model is for CO2 storage in deep fractured rock. (abridged text)
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Kernenergetik und Energiesysteme durchgeführt. Das übergeordnete wissenschaftliche Ziel des Verbundvorhabens ist die Untersuchung des Wärmeübergangs bis zur Siedekrise (CHF) und darüber hinaus (Post-CHF) bei hohen Drücken. Hierzu soll der Einfluss verschiedener Parameter auf CHF und Post-CHF experimentell untersucht und mit den Ergebnissen eine umfangreiche Datenbank aufgebaut werden. Numerische Simulationen mit CFD-Programmen sollen zum besseren Verständnis der zu untersuchenden Phänomene beitragen und die experimentellen Arbeiten unterstützten. Auf Basis der hierdurch gewonnenen Erkenntnisse sollen vorhandene Modelle zur Vorhersage des CHF und des Post-CHF Wärmeübergangs bewertet, verbessert (oder ggf. neu entwickelt) und anhand der experimentellen Daten validiert werden. Hierdurch soll vor allem auch die Übertragbarkeit auf unterschiedliche Fluide gewährleistet sein. Die im Vorhaben entwickelten validierten Modelle sollen in das STH-Programm ATHLET implementiert und damit dessen Aussagekraft speziell auch für innovative nukleare Systeme mit überkritischen Fluiden verbessert werden. Im Teilvorhaben MEADOW sollen in der Versuchsanlage SCARLETT Experimente mit dem Kühlmittel Kohlenstoffdioxid (CO2) zu CHF und Post-CHF überwiegend unter Bedingungen mit hohem Dampfanteil durchgeführt damit zur im Verbundprojekt aufzubauenden Datenbank beigetragen werden. Die Modellentwicklung im Teilvorhaben konzentriert sich auf die Phänomene des kritischen Wärmeübergangs bei hohen Dampfanteilen, für die das Abreißen oder Austrocknen des wandnahen Flüssigkeitsfilms als bestimmend angesehen wird.
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Fakultät für Maschinenwesen, Lehrstuhl für Energiesysteme durchgeführt. In den zukünftigen nuklearen Systemen kommen überkritische Fluide immer häufiger zum Einsatz. Für die Sicherheitsbewertung eines thermohydraulischen Systems mit überkritischen Fluiden sind die genauen Kenntnisse des Wärmeübergangs in einem breiten Druckbereich unentbehrlich. Bei Lasttransienten werden dabei auch unterkritische Drücke und die damit verbundenen Siedekrisen für die Systemsicherheit relevant. Während die Siedekrisen zwar bis zu einem reduzierten Druckverhältnis von 0,7 gut erforscht sind, existiert eine Forschungslücke bei höheren Drücken. Das übergeordnete Ziel dieses Verbundvorhabens ist die Untersuchung und Modellierung des Post-CHF Wärmeübergangs im hohen Druckbereich. So sollen konzertiert mit drei unterschiedlichen Fluiden (Wasser, CO2 und R134a) vergleichbare Experimente durchgeführt werden, was eine Skalierung von Modellen und Korrelationen erst ermöglicht. Die Ergebnisse sollen zudem in die Thermohydraulische Systemsoftware Athlet implementiert werden, um eine direkte Anwendbarkeit der Ergebnisse sicherzustellen. In diesem Teilprojekt werden die Versuche mit dem Arbeitsmedium Wasser adressiert und damit die folgenden wissenschaftlichen und technischen Ziele angestrebt: - Experimentelle Untersuchungen des Post-CHF Wärmeübergangs bei hohen Drücken; - Aufbau einer experimentellen Datenbank für CHF und Post-CHF Wärmeübergang in Kreisrohrgeometrie mit Wasser als Arbeitsfluid; - Modellierung des DNB Wärmeübergangs, sowohl durch mechanistische Modelle als auch durch empirische Korrelationen (andere Phänomene werden von den Verbundprojektpartnern untersucht); - Bewertung und Entwicklung der Fluid-zu-Fluid Skalierungsmodelle für den DNB Wärmeübergang; - Erweiterung des STH-Programms ATHLET durch die Implementierung der neuen Modelle für den DNB Wärmeübergang.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von S2B GmbH & Co. KG durchgeführt. Natürliche Triterpen-Verbinungen finden ein sehr breites Anwendungsspektrum in der Kosmetik- und Pharmaindustrie, beginnend bei feuchtigkeitsspendender Hautcreme, über antimikrobielle, entzündungshemmende, antivirale und antitumorale bis hin zu hepatoprotektiven bzw. tumortherapeutischen Präparaten. Die Verfahren zur Herstellung dieser Produkte basieren jedoch auf einer wenig nachhaltigen, destruktiven Ausbeutung mariner Ressourcen (Fischöl, Haifischlebertran) und fossiler Rohstoffe oder wenig effizienter Landwirtschaft, vorwiegend in Entwicklungsländern, in denen diese mit dem Anbau von Nahrungsmitteln konkurriert. Das Kooperationskonsortium Sus-Terpen, bestehend aus zwei KMUs und zwei akademischen Partnern, beabsichtigt die Entwicklung einer neuartigen, hocheffizienten Plattformtechnologie zur Herstellung der Triterpene Squalen, Oleanol- und Ursolsäure in der marinen Mikroalge Schizochytrium sp.. Um dieses Ziel zu erreichen nutzt Sus-Terpen reiterative Stammentwicklung und kombiniert Bioprozessentwicklung mit einer maßgeschneiderten Downstream-Technologie, basierend auf dem umweltfreundlichen, superkritischen CO2. Um mehr Nachhaltigkeit in der biotechnologischen Produktion zu generieren und damit einen Schritt hin zu einer ökologischen Recyclingwirtschaft mit geschlossenen Stoffkreisläufen zu beschreiten, beabsichtigen die Projektpartner eine Implementierung von organischen Nebenstoffen als Fermentationssubstrate sowie prozessinterner Rohstoff- und Energierückgewinnungskonzepte mittels anaerobem Biogasprozess. Besonderer Fokus wird auf die Nutzung von Rohstoffen marinen Ursprungs gesetzt, z.B. Makroalgen- und Pilzbiomasse, Meeresalgentreibgut und Nebenstoffen aus der Verarbeitung mariner Nahrungsmittel. Durch den Transfer der Entwicklungsergebnisse in den Pilotmaßstab innerhalb der Projektlaufzeit sowie die Anmeldung gewerblicher Schutzrechte entlang der gesamten Produktionskaskade, soll eine unmittelbare Kommerzialisierung beschleunigt werden.
Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von BioActive Food GmbH durchgeführt. Natürliche Triterpen-Verbinungen finden ein sehr breites Anwendungsspektrum in der Kosmetik- und Pharmaindustrie, beginnend bei feuchtigkeitsspendender Hautcreme, über antimikrobielle, entzündungshemmende, antivirale und antitumorale bis hin zu hepatoprotektiven bzw. tumortherapeutischen Präparaten. Die Verfahren zur Herstellung dieser Produkte basieren jedoch auf einer wenig nachhaltigen, destruktiven Ausbeutung mariner Ressourcen (Fischöl, Haifischlebertran) und fossiler Rohstoffe oder wenig effizienter Landwirtschaft, vorwiegend in Entwicklungsländern, in denen diese mit dem Anbau von Nahrungsmitteln konkurriert. Das Kooperationskonsortium Sus-Terpen, bestehend aus zwei KMUs und zwei akademischen Partnern, beabsichtigt die Entwicklung einer neuartigen, hocheffizienten Plattformtechnologie zur Herstellung der Triterpene Squalen, Oleanol- und Ursolsäure in der marinen Mikroalge Schizochytrium sp.. Um dieses Ziel zu erreichen nutzt Sus-Terpen reiterative Stammentwicklung und kombiniert Bioprozessentwicklung mit einer maßgeschneiderten Downstream-Technologie, basierend auf dem umweltfreundlichen, superkritischen CO2. Um mehr Nachhaltigkeit in der biotechnologischen Produktion zu generieren und damit einen Schritt hin zu einer ökologischen Recyclingwirtschaft mit geschlossenen Stoffkreisläufen zu beschreiten, beabsichtigen die Projektpartner eine Implementierung von organischen Nebenstoffen als Fermentationssubstrate sowie prozessinterner Rohstoff- und Energierückgewinnungskonzepte mittels anaerobem Biogasprozess. Besonderer Fokus wird auf die Nutzung von Rohstoffen marinen Ursprungs gesetzt, z.B. Makroalgen- und Pilzbiomasse, Meeresalgentreibgut und Nebenstoffen aus der Verarbeitung mariner Nahrungsmittel. Durch den Transfer der Entwicklungsergebnisse in den Pilotmaßstab innerhalb der Projektlaufzeit sowie die Anmeldung gewerblicher Schutzrechte entlang der gesamten Produktionskaskade, soll eine unmittelbare Kommerzialisierung beschleunigt werden.
Das Projekt "Teilvorhaben 5" wird vom Umweltbundesamt gefördert und von Lederfabrik Josef Heinen GmbH & Co. KG durchgeführt. Das Vorhaben hat die Herstellung von Leder unter enormer Einsparung von Wasser, Gerbzeit und Chemikalien zum Ziel. Die Ergebnisse des Technikumsmaßstabs haben bewiesen, dass das neue Verfahren großes Potential birgt. Das Scale-up wird intensiv durch Heinen unterstützt, und somit kann gesichert werden, dass industrielle Standards bzgl. Gerbung, Verarbeitung und Zurichtung erfüllt werden. Die Ledertechniker haben die Aufgabe, sowohl ein optimales Anlagenkonzept mit zu konzipieren wie auch die Versuche intensiv zu unterstützen. Darüber hinaus sollen neue, optimierte Gerbrezepturen für das neue Verfahren entwickelt werden. Heinen wird in verschiedenen Bereichen das Vorhaben unterstützen. In der ersten Projektphase berät Heinen bei der Konzipierung der neuen Anlage. In der zweiten Projektphase unterstützt Heinen die Einfahrversuche der Anlage und erste Gerbungen. In der dritten und entscheidenden Projektphase arbeitet Heinen intensiv an der Herstellung von Musterchargen mit UMSICHT zusammen.
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg, Institut für Umwelttechnik und Energiewirtschaft - Abfallressourcenwirtschaft (V-9) durchgeführt. Natürliche Triterpen-Verbinungen finden ein sehr breites Anwendungsspektrum in der Kosmetik- und Pharmaindustrie, beginnend bei feuchtigkeitsspendender Hautcreme, über antimikrobielle, entzündungshemmende, antivirale und antitumorale bis hin zu hepatoprotektiven bzw. tumortherapeutischen Präparaten. Die Verfahren zur Herstellung dieser Produkte basieren jedoch auf einer wenig nachhaltigen, destruktiven Ausbeutung mariner Ressourcen (Fischöl, Haifischlebertran) und fossiler Rohstoffe oder wenig effizienter Landwirtschaft, vorwiegend in Entwicklungsländern, in denen diese mit dem Anbau von Nahrungsmitteln konkurriert. Das Kooperationskonsortium Sus-Terpen, bestehend aus zwei KMUs und zwei akademischen Partnern, beabsichtigt die Entwicklung einer neuartigen, hocheffizienten Plattformtechnologie zur Herstellung der Triterpene Squalen, Oleanol- und Ursolsäure in der marinen Mikroalge Schizochytrium sp.. Um dieses Ziel zu erreichen nutzt Sus-Terpen reiterative Stammentwicklung und kombiniert Bioprozessentwicklung mit einer maßgeschneiderten Downstream-Technologie, basierend auf dem umweltfreundlichen, superkritischen CO2. Um mehr Nachhaltigkeit in der biotechnologischen Produktion zu generieren und damit einen Schritt hin zu einer ökologischen Recyclingwirtschaft mit geschlossenen Stoffkreisläufen zu beschreiten, beabsichtigen die Projektpartner eine Implementierung von organischen Nebenstoffen als Fermentationssubstrate sowie prozessinterner Rohstoff- und Energierückgewinnungskonzepte mittels anaerobem Biogasprozess. Besonderer Fokus wird auf die Nutzung von Rohstoffen marinen Ursprungs gesetzt, z.B. Makroalgen- und Pilzbiomasse, Meeresalgentreibgut und Nebenstoffen aus der Verarbeitung mariner Nahrungsmittel. Durch den Transfer der Entwicklungsergebnisse in den Pilotmaßstab innerhalb der Projektlaufzeit sowie die Anmeldung gewerblicher Schutzrechte entlang der gesamten Produktionskaskade, soll eine unmittelbare Kommerzialisierung beschleunigt werden.
Das Projekt "Kopplung von MUFTE und GeoSys/Rock Flow zur Verifikation der ECLIPSE - GeoSys-Kopplung - Sonderprogramm GEOTECHNOLOGIEN" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasserbau durchgeführt. Ziel des Teilprojekts sind die Verifikation der Kopplung der Programmpakete ECLIPSE und GeoSys/RockFlow zur Simulation der hydraul. und geochem. Prozesse bei der Verpressung von superkritischem CO2 in tiefe, saline Grundwasserleiter und die Untersuchung der gegenseitigen Abhängigkeit der physikal.-chem. Prozesse, die durch die verschiedenen Modelle simuliert wurden.
Origin | Count |
---|---|
Bund | 85 |
Type | Count |
---|---|
Förderprogramm | 84 |
unbekannt | 1 |
License | Count |
---|---|
open | 84 |
unknown | 1 |
Language | Count |
---|---|
Deutsch | 84 |
Englisch | 13 |
Resource type | Count |
---|---|
Keine | 47 |
Webseite | 38 |
Topic | Count |
---|---|
Boden | 77 |
Lebewesen & Lebensräume | 76 |
Luft | 73 |
Mensch & Umwelt | 85 |
Wasser | 74 |
Weitere | 85 |