Das Projekt "Development of new intermodal loading units and dedicated adaptors for the trimodal transport of bulk materials in Europe (TRIMOTRANS)" wird vom Umweltbundesamt gefördert und von Zentrum für angewandte Forschung und Technologie e.V. durchgeführt. Objective: The constitution of the common European market is accompanied by continuously increasing cross-border goods and passenger traffic. Road transportation is facing a rapidly increasing congestion whilein the contrary the available capacities in railway transportation as well as inland waterwaytransportation are being underutilised. A redistribution of the carriage of goods is urgently needed, but up to now the most important obstacles consists in the incompatible interfaces between the various carriers and the diversity of loading devices being used in the EU. Main objective of the project is the development of new intermodal loading units including devices (ISO-bulk container and Roll-off container), capable adaptors and mobile fixtures suitable for the trimodal transport of bulk and packaged goods at road, railway and inland waterways. Essential element of the project is the design and integration of innovative adaptors for lifting and shifting operations of the loading units. This will lead to an optimum on intermodal compatibility. The goals are in conformity with the aims of the Specific Programme 'Sustainable Surface Transport', research domain 3.16. 'Development of equipment for fast loading / unloading of intermodal transport units'. By application of the new loading units the logistic chain can be set up without changing the loading unit throughout the whole door-to-door transport process. The transhipping procedures do not require crane technology any more and the costs will be reduced substantially. The uniformity of the specialinternal features as well as the compliance with the ISO-container dimensions will contribute to the harmonisation of loading units. The projects includes the development of containers, adaptors and mobile units, test and demonstration of two prototypes and dissemination and exploitation of the results. The consortium consists of ten partner with six SMEs from five countries (G, HU, CH, A,CR)
Das Projekt "Vorhaben: UnloaD - Unkonventionelle Propeller in einer automatisierten Design-umgebung" wird vom Umweltbundesamt gefördert und von Friendship Systems AG durchgeführt. Übergeordnetes Ziel des Verbundprojekts DEffProForm ist es, den Energieverbrauch von Schiffen weiter zu senken. Neben der Energieeffizienz soll auch die Qualität des Propellers hinsichtlich Lärmabstrahlungen und Druckpulse auf den Schiffskörper verbessert werden. Unkonventionelle Propeller können hierbei eine Schlüsselrolle einnehmen. Das Teilvorhaben UnloaD wird durch FRIENDSHIP SYSTEMS bearbeitet. Die wissenschaftlich-technischen Ziele sind hierbei wie folgt: - Entwicklung einer parametrischen Modellierungsmethodik für unkonventionelle Propeller mit dem Ziel, funktionale Eigenschaften insbesondere der Spitzengeometrie zu adressieren und Propellerentwerfern damit einen besseren und leichteren Zugang zur Gestaltung der Flügelgeometrie an die Hand zu geben. - Umsetzung eines Entwurfsprozesses unter Verwendung der entwickelten Parametrik in CAESES in einer speziellen Ausprägung der graphischen Benutzeroberfläche, die auf den Entwurf, die Simulation und Optimierung von unkonventionellen Propellern ausgelegt ist. - Entwicklung einer Anwendung für den Entwurf von Hinterschiffen aus wenigen verfügbaren Informationen, z.B. aus einem Generalplan, um für die Bewertung der Propeller in der Simulation ein möglichst realitätsnahes Nachstromfeld frühzeitig bereitstellen zu können. - Realisierung eines KI-basierten Ersatzmodells aus Simulationsergebnissen für eine Familie von unkonventionellen Propellern und Integration des Modells in das Entwurfswerkzeug.
Das Projekt "Regulation of AtPGP1-mediated auxin transport by phosphorylation" wird vom Umweltbundesamt gefördert und von Universität Zürich, Institut für Pflanzenbiologie, Abteilung Physiologie und Mikrobiologie durchgeführt. Auxin - principally indole-3-acetic acid (IAA) - has proven as unique signaling molecule virtually controlling all plant developmental processes. Recent research has concentrated on the fascinating feature auxin being transported in a directed or polar fashion. Polar auxin transport (PAT) is regulated at the cellular level and is apparently both a product and determinant of cellular polarity. Auxin unloading is thought to be mediated by protein complexes that are characterized by members of the p-plycoprotein (PGP) and pin-shaped (PIN) protein families. The establishment of auxin gradients is controlled by reversible protein phosphorylation, however, the individual targets of protein kinases and phosphatases are unknown. Several lines of evidence point to components of auxin efflux complexes and/or NPA-binding proteins as targets of phosphorylation. While PIN proteins are apparently unlikely candidates two findings favor PGP as targets: PGP1 has been shown recently to catalyze the primary active export of auxin and to be modulated by NPA binding. Moreover, in a recent phosphoproteomic approach, PGP1 has been demonstrated to be phosphorylated in conserved phosphorylation sites in a so-called regulatory linker domain. This domain is known to modulate the activity mammalian PGPs by phosphorylation via PKC. In this project we envisage to demonstrate that PGP1-mediated auxin transport is modulated by phosphorylation in its regulatory linker domain. Phosphoproteomic data, a yeast-based mutant screen, and site directed mutagenesis will be used to determine the impact of phosphorylation on transport activity. The outcome of the yeast work will allow us to engineer relevant phosphorylation sites in the linker domain of PGP1 that alter protein activity and/or location. Additionally, TILLING technology will be used to identify relevant point mutations in the linker domain. Finally, in order to identify plant-borne kinases/phosphatases responsible for (de)phosphorylation of PGP1, a classical yeast two-hybrid screen using the linker domain as bait will be carried out. In an inverse approach, the phosphorylation status of PGP1 will be upon will be determined biochemically and by mass spectrometry applying physiological, chemical and genetic tools. The outcome should provide a deep insight into the regulation of auxin transport via PGPs and the establishment of local auxin gradients controlling virtually all steps of plant development. Transfer of this knowledge might later on open new strategies for the directed genetic or chemical manipulation of plant development.