API src

Found 122 results.

Forest management in the Earth system

Das Projekt "Forest management in the Earth system" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.

Can the resistance and resilience of trees to drought be increased through thinning to adapt forests to climate change?

Das Projekt "Can the resistance and resilience of trees to drought be increased through thinning to adapt forests to climate change?" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Waldbau-Institut durchgeführt. Recent and predicted increases in extremely dry and hot summers emphasise the need for silvicultural approaches to increase the drought tolerance of existing forests in the short-term, before adaptation through species changes may be possible. We aim to investigate whether resistance during droughts, as well as the recovery following drought events (resilience), can be increased by allocating more growing space to individual trees through thinning. Thinning increases access of promoted trees to soil stored water, as long as this is available. However, these trees may also be disadvantaged through a higher transpirational surface, or the increased neighbourhood competition by ground vegetation. To assess whether trees with different growing space differ in drought tolerance, tree discs and cores from thinning experiments of Pinus sylvestris and Pseudotsuga menziesii stands will be used to examine transpirational stress and growth reduction during previous droughts as well as their subsequent recovery. Dendroecology and stable isotopes of carbon and oxygen in tree-rings will be used to quantify how assimilation rate and stomatal conductance were altered through thinning. The results will provide crucial information for the development of short-term silvicultural adaptation strategies to adapt forest ecosystems to climate change. In addition, this study will improve our understanding of the relationship between resistance and resilience of trees in relation to extreme stress events.

Evolution of geomagnetic dipole moment and South Atlantic Anomaly

Das Projekt "Evolution of geomagnetic dipole moment and South Atlantic Anomaly" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The geomagnetic field shields our habitat against solar wind and radiation from space. Due to the geometry of the field, the shielding in general is weakest at high latitudes. It is also anomalously weak in a region around the south Atlantic known as South Atlantic Anomaly (SAA), and the global dipole moment has been decreasing by nearly 10 percent since direct measurements of field intensity became possible in 1832. Due to our limited understanding of the geodynamo processes in Earths core, it is impossible to reliably predict the future evolution of both dipole moment and SAA over the coming decades. However, lack of magnetic field shielding as would be a consequence of further weakening of dipole moment and SAA region field intensity would cause increasing problems for modern technology, in particular satellites, which are vulnerable to radiation damage. A better understanding of the underlying processes is required to estimate the future development of magnetic field characteristics. The study of the past evolution of such characteristics based on historical, archeo- and paleomagnetic data, on time-scales of centuries to millennia, is essential to detect any recurrences and periodicities and provide new insights in dynamo processes in comparison to or in combination with numerical dynamo simulations. We propose to develop two new global spherical harmonic geomagnetic field models, spanning 1 and 10 kyrs, respectively, and designed in particular to study how long the uninterrupted decay of the dipole moment has been going on prior to 1832, and if the SAA is a recurring structure of the field.We will combine for the first time all available historical and archeomagnetic data, both directions and intensities, in a spherical harmonic model spanning the past 1000 years. Existing modelling methods will be adapted accordingly, and existing data bases will be complemented with newly published data. We will further acquire some new archeomagnetic data from the Cape Verde islands from historical times to better constrain the early evolution of the present-day SAA. In order to study the long-term field evolution and possible recurrences of similar weak field structures in this region, we will produce new paleomagnetic records from available marine sediment cores off the coasts of West Africa, Brazil and Chile. This region is weakly constrained in previous millennial scale models. Apart from our main aim to gain better insights into the previous evolution of dipole moment and SAA, the models will be used to study relations between dipole and non-dipole field contributions, hemispheric symmetries and large-scale flux patterns at the core-mantle boundary. These observational findings will provide new insights into geodynamo processes when compared with numerical dynamo simulation results.Moreover, the models can be used to estimate past geomagnetic shielding above Earths surface against solar wind and for nuclide production from galactic cosmic rays.

Assessment of genetic diversity of legumes in the highlands of Northern Vietnam for genetic resource conservation and sustainable landuse

Das Projekt "Assessment of genetic diversity of legumes in the highlands of Northern Vietnam for genetic resource conservation and sustainable landuse" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Fakultät III Agrarwissenschaften I, Institut für Pflanzenproduktion und Agrarökologie in den Tropen und Subtropen, Fachgebiet Biodiversität und Landrehabilitation in den Tropen und Subtropen durchgeführt. Increasing population pressure is leading to unsustainable land use in North Vietnamese highlands and destruction of natural habitats. The resulting loss of biodiversity includes plant genetic resources - both wild (= non-cultivated) species and cultivated landraces - adapted to local conditions, and local knowledge concerning the plants. A particularly important group among endangered plants are the legumes (1) because Southeast Asia is a major centre of genetic diversity for this family, and (2) because the potential contribution of legumes to sustainable land use is, due to their multifunctionality (e.g., soil improvement, human and livestock nutrition), especially high. The project aims to contribute to the conservation and sustainable use of genetic resources of legumes with an integrated approach wherein a series of components are combined: (1) A participatory, indigenous knowledge survey complemented by information from the literature; (2) germplasm collection missions (for ex situ conservation) complemented by field evaluation and seed increase; (3) genetic diversity analysis of selected material by molecular markers; and (4) GIS based analysis of generated data to identify areas of particular genetic diversity as a basis for land area planning and in situ preservation recommendations. Project results are expected to be also applicable to similar highlands in Southeast Asia.

Durch Co-Creation gemeinsam an den Klimawandel anpassen

Das Projekt "Durch Co-Creation gemeinsam an den Klimawandel anpassen" wird vom Umweltbundesamt gefördert und von Stadt Braunschweig - Dezernat VIII Umwelt-, Stadtgrün-, Sport- und Hochbaudezernat - FB 68 Umwelt durchgeführt. Wie viele andere Großstädte ist Braunschweig von den Folgen des Klimawandels betroffen. Entsprechend steht die Stadt Herausforderungen wie zunehmende Hitzeperioden, Starkregen- und Hochwasserereignissen, verringerter Wasserverfügbarkeit sowie Verschiebung und Veränderungen von Artenzusammensetzungen bei Flora und Fauna gegenüber. Ziel des Projekts 'Co-Adapted Braunschweig: Durch Co-Creation gemeinsam an den Klimawandel anpassen' (COABS) ist es, relevante Akteur*innen zusammen zu bringen und dauerhaft zu vernetzen. Co-Creation ist eine Form der Partizipation, bei der Bürger*innen und andere Akteur*innen aktiv teilnehmen bei der Konzeption, Gestaltung und Organisation von Projekten. Gemeinsam mit Bürger*innen, Wissenschaftler*innen, Verwaltung, Schulen, sowie Vereinen und Verbänden sollen so die Klimarisiken in Braunschweig analysiert, Maßnahmen zur Erhöhung der Anpassungskapazität entwickelt und deren Umsetzung öffentlichkeitswirksam angestoßen werden. Am Ende stehen eine gesamtstädtische Anpassungsstrategie sowie die konkrete Erarbeitung von Anpassungsmaßnahmen als Klimapilot. Dabei werden die Handlungsfelder 'Wassermengenmanagement & Bodenhaushalt', 'Mensch & Gesundheit' und 'Naturschutz & Biodiversität' integriert, also einschließlich Synergien und Zielkonflikten betrachtet.

Durch Co-Creation gemeinsam an den Klimawandel anpassen

Das Projekt "Durch Co-Creation gemeinsam an den Klimawandel anpassen" wird vom Umweltbundesamt gefördert und von Technische Universität Braunschweig, Institut für Geoökologie, Abteilung Klimatologie und Umweltmeteorologie durchgeführt. Wie viele andere Großstädte ist Braunschweig von den Folgen des Klimawandels betroffen. Entsprechend steht die Stadt Herausforderungen wie zunehmende Hitzeperioden, Starkregen- und Hochwasserereignissen, verringerter Wasserverfügbarkeit sowie Verschiebung und Veränderungen von Artenzusammensetzungen bei Flora und Fauna gegenüber. Ziel des Projekts 'Co-Adapted Braunschweig: Durch Co-Creation gemeinsam an den Klimawandel anpassen' (COABS) ist es, relevante Akteur*innen zusammen zu bringen und dauerhaft zu vernetzen. Co-Creation ist eine Form der Partizipation, bei der Bürger*innen und andere Akteur*innen aktiv teilnehmen bei der Konzeption, Gestaltung und Organisation von Projekten. Gemeinsam mit Bürger*innen, Wissenschaftler*innen, Verwaltung, Schulen, sowie Vereinen und Verbänden sollen so die Klimarisiken in Braunschweig analysiert, Maßnahmen zur Erhöhung der Anpassungskapazität entwickelt und deren Umsetzung öffentlichkeitswirksam angestoßen werden. Am Ende stehen eine gesamtstädtische Anpassungsstrategie sowie die konkrete Erarbeitung von Anpassungsmaßnahmen als Klimapilot. Dabei werden die Handlungsfelder 'Wassermengenmanagement & Bodenhaushalt', 'Mensch & Gesundheit' und 'Naturschutz & Biodiversität' integriert, also einschließlich Synergien und Zielkonflikten betrachtet.

Alpine plant ecology

Das Projekt "Alpine plant ecology" wird vom Umweltbundesamt gefördert und von Universität Basel, Botanisches Institut, Abteilung Pflanzenökologie durchgeführt. Our long term activities aim at a functional understanding of alpine plant life. Overall our research shifted gradually from studying resource acquisition (e.g. photosynthesis) toward resource investment and questions of developement. As with treeline, sink activity seems to be the major determinant of growth. A common misconception associated with alpine plant life finds its expression in the use of the terms 'stress' and 'limitation'. See the critique in: Körner C (1998) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (eds.) Physiological Plant Ecology. Blackwell Science , 297-311. Ongoing experimental work: The influence of photoperiod on growth and development in high elevation taxa (Ph.D. by Franziska Keller in cooperation with the Dept. of Geography, University of Fribourg). We test, whether and which species are responsive to earlier snow melt. It appears there exists a suite of different sensitivities, suggesting biodiversity shifts. We also tested the influence of nutrient addition on high elevation pioneer plants and run a longer term project on the interactive effect on sheep tramplng, nitrogen deposition and warming as part of the Swiss National Project NFP 48. A Europe-wide assessment of ground temperatures in alpine grassland is part of ALPNET (see associated organisations). The assessment provides a basis for comparing biodiversity in alpine biota from 69 to 37 degree of northern latitude. (Nagy et al. (2003) Ecological Studies, Vol. 167. 577 p. Springer, Berlin). A synthesis of research in functional ecology of alpine plants over the past 100 years was published in 1999.

Profiling methane emission in the Baltic Sea: Cryptophane as in-situ chemical sensor

Das Projekt "Profiling methane emission in the Baltic Sea: Cryptophane as in-situ chemical sensor" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Ostseeforschung Warnemünde (IOW), Sektion Meereschemie durchgeführt. To overcome the limitation in spatial and temporal resolution of methane oceanic measurements, sensors are needed that can autonomously detect CH4-concentrations over longer periods of time. The proposed project is aimed at:- Designing molecular receptors for methane recognition (cryptophane-A and -111) and synthesizing new compounds allowing their introduction in polymeric structure (Task 1; LC, France); - Adapting, calibrating and validating the 2 available optical technologies, one of which serves as the reference sensor, for the in-situ detection and measurements of CH4 in the marine environments (Task 2 and 3; GET, LAAS-OSE, IOW) Boulart et al. (2008) showed that a polymeric filmchanges its bulk refractive index when methane docks on to cryptophane-A supra-molecules that are mixed in to the polymeric film. It is the occurrence of methane in solution, which changes either the refractive index measured with high resolution Surface Plasmon Resonance (SPR; Chinowsky et al., 2003; Boulart et al, 2012b) or the transmitted power measured with differential fiber-optic refractometer (Boulart et al., 2012a; Aouba et al., 2012).- Using the developed sensors for the study of the CH4 cycle in relevant oceanic environment (the GODESS station in the Baltic Sea, Task 4 and 5; IOW, GET); GODESS registers a number of parameters with high temporal and vertical resolution by conducting up to 200 vertical profiles over 3 months deployment with a profiling platform hosting the sensor suite. - Quantifying methane fluxes to the atmosphere (Task 6); clearly, the current project, which aims at developing in-situ aqueous gas sensors, provides the technological tool to achieve the implementation of ocean observatories for CH4. The aim is to bring the fiber-optic methane sensor on the TRL (Technology Readiness Level) from their current Level 3 (Analytical and laboratory studies to validate analytical predictions) - to the Levels 5 and 6 (Component and/or basic sub-system technology validation in relevant sensing environments) and compare it to the SPR methane sensor, taken as the reference sensor (current TRL 5). This would lead to potential patent applications before further tests and commercialization. This will be achieved by the ensemble competences and contributions from the proposed consortium in this project.

Non-destructive characterization and monitoring of root structure and function at the rhizotron and field scale using spectral electrical impedance tomography (ImpTom)

Das Projekt "Non-destructive characterization and monitoring of root structure and function at the rhizotron and field scale using spectral electrical impedance tomography (ImpTom)" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Departement Agrar- und Lebensmittelwissenschaften, Institut für Nutztierwissenschaften, Gruppe Physiologie und Tierhaltung durchgeführt. This subproject aims at the development of spectral electrical impedance tomography (EIT) as a non-destructive tool for the imaging, characterization and monitoring of root structure and function in the subsoil at the field scale. The approach takes advantage of the capacitive properties of the soil-root interface associated with induced electrical polarization processes at the root membrane. These give rise to a characteristic electrical signature (impedance spectrum), which is measurable in an imaging framework using EIT. In the first project phase, the methodology is developed by means of controlled rhizotron experiments in the laboratory. The goal is to establish quantitative relationships between characteristics of the measured impedance spectra and parameters describing root system morphology, root growth and activity in dependence on root type, soil type and structure (with/without biopores), as well as ambient conditions. Parallel to this work, sophisticated EIT inversion algorithms, which take the natural characteristics of root system architecture into account when solving the inherent inverse problem, will be developed and tested in numerical experiments. Thus the project will provide an understanding of electrical impedance spectra in terms of root structure and function, as well as specifically adapted EIT inversion algorithms for the imaging and monitoring of root dynamics. The method will be applied at the field scale (central field trial in Klein-Altendorf), where non-destructive tools for the imaging and monitoring of subsoil root dynamics are strongly desired, but at present still lacking.

Teilprojekt 4: Hydrologische Modellierung und Dürrevorhersage

Das Projekt "Teilprojekt 4: Hydrologische Modellierung und Dürrevorhersage" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Drought-ADAPT hat zum Ziel, innovative Lösungsansätze zu entwickeln, um kurz-, mittel- und langfristige Planungen und Anpassungsmaßnahmen an Dürresituationen und deren Auswirkungen im Kontext des Klimawandels für das zentrale Hochland Vietnams zu unterstützen. Das Projekt agiert daher auf verschiedenen Ebenen, um seine Ziele zu erreichen: 1) auf lokaler Ebene: technisch innovative Ingenieurslösungen auf Farm-/Dorf-Ebene, um lokale Gemeinden bei der Sicherung ihrer Investitionen und ihrer hohen landwirtschaftlichen Produktivität zu unterstützen; 2) auf Provinz-/regionaler Ebene: innovative Klimadienstleistungen (Climate Services) zur Förderung von Provinzbehörden, sich an die Auswirkungen des Klimawandels anzupassen. Die Arbeiten des GFZ beziehen sich vorwiegend auf die regionale Ebene. Die Arbeiten befassen sich mit den folgenden drei Aspekten: 1. Abschätzung der regionalen Grundwasserressourcen mittels satellitenbasierter Gravimetrie, 2. der regionalen hydrologischen Modellierung zur Erfassung der gesamten Wasserressourcen und deren räumlich-zeitlicher Dynamik sowie die durch den Klimawandel zu erwartenden zukünftigen Änderungen, und 3. der Entwicklung von saisonalen Vorhersagemodellen für hydrologische Dürren. Mit diesen Arbeiten werden bestehende Wissenslücken gefüllt (z.B. über die Grundwasserressourcen), die langfristigen Planungen durch quantitative Angaben zu den Wasserressourcen und deren Änderungen unterstützt und modellhaft getestet, sowie die saisonale operationelle Dürremanagement wesentlich verbessert (saisonale Dürrevorhersagen). Durch die enge Einbindung der verantwortlichen Behörden und Institutionen wird zudem die Grundlage für eine nachhaltige Nutzung der Projektergebnisse und der entwickelten Modelle gelegt.

1 2 3 4 511 12 13