Der Kartendienst (WMS) stellt die Geodaten aus dem Landschaftsprogramm Saarland die Themenkarte Oberflächengewässer und Auen dar.:Im Landschaftsprogramm werden Referenzstrecken für Fließgewässerrenaturierungen in den einzelnen Naturräumen dargestellt. Sie dienen als Vorbilder für Renaturierungsmaßnahmen (Gewässerstruktur verbessernde Maßnahmen) in dem jeweiligen Naturraum.
PHILEAS (Probing high latitude export of air from the Asian summer monsoon)Die asiatische Sommermonsun Antizyklone (AMA) während des Nordsommers wird als ein Haupttransportweg in die obere Troposphäre / untere Stratosphäre (UTLS) für troposphärische Luftmassen, die viel H2O und Aerosolvorläufergase und Verschmutzung enthalten, gesehen. Neuere Beobachtungen zeigen eine große Bedeutung des Transports von Ammoniumnitrat durch die AMA für das Aerosolbudget und die asiatische Tropopausenaerosolschicht (ATAL), wahrscheinlich auch mit Konsequenzen für die Zirrenbildung.Neuere flugzeuggetragene Messkampagnen konnten die Zusammensetzung und Aerosolgehalt im Inneren der AMA charakterisieren oder werden in unmittelbarer Nähe Messungen erheben. Im Gegensatz dazu wurde der Einfluss von monsungeprägten Luftmassen auf die Gesamtzusammensetzung der nördlichen untersten Stratosphäre, z.B. bei HALO Mesungen nachgewiesen. Allerdings gibt es bisher keine Studie, die den Übergang der AMA Luftmassen in die extratropische unterste Stratosphäre (LMS) und die Konsequenzen für Aerosolprozessierung und Zusammensetzung zeigt. Im Rahmen der früheren HALO Missionen TACTS/ESMVal und WISE hat sich gezeigt, dass der nördliche Zentralpazifik eine Schlüsselregion für diesen Übergang ist.Beobachtungen und Modelldaten zeigen eine besondere Bedeutung des sogenannten ‘eddy-sheddings‘ für die Befeuchtung der nördlichen UTLS an. Diese Eddies stellen isolierte dynamische Anomalien dar, die sich von der AMA gelöst haben und mit der Hintergrundströmung in der Atmosphäre zu zirkulieren beginnen. Die chemische Zusammensetzung der Eddies ist zunächst isoliert von ihrer Umgebung. Dynamische und diabatische Prozesse erodieren jedoch diese Anomalien und führen zu einer allmählichen Vermischung mit dem stratosphärischen Hintergrund.Weitere Transportpfade beeinflussen die Zusammensetzung der UTLS über dem Pazifik im Sommer: i) quasi-horizontales Mischen über den Subtropenjet ii) konvektiver Eintrag tropischer Taifune, die in die Extratropen wandern können iii) Wettersysteme der mittleren Breiten. Bei PHILEAS ist geplant, die relative Bedeutung verschiedener Prozesse für die Gasphasen und Aerosolzusammensetzung der UTLS zu untersuchen. Dabei soll insbesondere die dynamische und chemische Entwicklung ehemaliger AMA Filamente untersucht werden, die sich von der AMA abgespalten haben und über dem Pazifik aus der Troposphäre in die Stratosphäre übergehen.Insgesamt ergeben sich drei Hauptthemen, die die PHILEAS Mission motivieren:1) Welche Haupttransportpfade, Zeitskalen und Prozesse dominieren den Transport aus der AMA in die unterste Stratosphäre?2) Wie entwickeln sich Zusammensetzung der Gasphase und der Aerosole während des Transports speziell durch die 'shed eddies'?3) Welche Bedeutung hat der Prozess der Wirbelablösung für das globale Budget der UTLS speziell von H2O und infrarot-aktiven Substanzen?
Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.
Eine wesentliche Ursache des Insektenrückgangs ist der Verlust der spezifischen Lebensräume. Auch in den Auen ist der Verlust deutlich. Ziel des Projektes InseGdA ist es daher, einen räumlichen Verbund aquatischer und terrestrischer Lebensräume mit gesteigerter Eignung als Lebensraum für viele auetypische Insektenarten zu schaffen und insektenfreundliche Bewirtschaftungsmethoden zu entwickeln.
Wie viele Fischarten schwimmen in der Havel? Wo drohen Überschwemmungen? Welche Schadstoffe sind im Landwehrkanal zu finden? Und wo kommt eigentlich das Berliner Trinkwasser her? Hier finden Sie alles, was Sie über das Wasser und Grundwasser in Berlin wissen wollen. Bild: Umweltatlas Berlin Wasserhaushalt Was passiert mit Regen, wenn er auf Berliner Boden trifft. Versickert, verdunstet oder fließt er direkt in die Kanalisation ab? Mit unseren Karten können Sie nachvollziehen, wo Niederschläge bleiben - auch in Ihrem Kiez. Weitere Informationen Bild: Umweltatlas Berlin Regen- und Abwasser Sechs Klärwerke und knapp 10.000 Kilometer Kanalnetz kümmern sich um Abwasser und Regen in Berlin. In den Altbaugebieten im Zentrum teilen sich Niederschläge und Schmutzwasser die Kanäle. Außerhalb des S-Bahnrings ist die Kanalisation getrennt angelegt. Hier gibt es den Überblick, wo was wie läuft. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserhöhen Täglich wird in Berlin die Höhe des Grundwasserstands aufgezeichnet. Das ist wichtig, weil sich die Stadt mit dem fürs Leben und Arbeiten benötigten Wasser selbst versorgt. Was Grundwasser ist, wie es entsteht und wie es überwacht wird, können Sie hier lesen. Weitere Informationen Bild: Umweltatlas Berlin Grundwassertemperatur Wie warm ist das Grundwasser in 20, 40 oder 100 Metern Tiefe? Das wird in Berlin seit den 1980er Jahren dokumentiert. Hier können Sie nachvollziehen, welchen Unterschied es macht, ob überirdisch der Alexanderplatz, der Große Tiergarten oder eine Industrieanlage liegt. Weitere Informationen Bild: Umweltatlas Berlin Flurabstand Das Grundwasser liegt in Berlin mancherorts nur wenige Spatenstiche unter der Erde. Jedoch hat der wachsende Bedarf den Grundwasserstand über die Jahrhunderte verringert. 2009 befand sich die Grundwasseroberfläche auf einem relativ hohen Niveau. 2009 zeigt ein durchschnittlich feuchtes Jahr. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserneubildung Für Nachschub an Grundwasser ist gesorgt: Versickernder Regen füllt die Vorräte im Berliner Untergrund auf. Doch die Hälfte des Niederschlags geht vorher verloren, verdunstet oder landet in der Kanalisation. Wieviel das ist, ist in Berlin sehr unterschiedlich. Dies können Sie hier nachvollziehen. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserstand (zeHGW) Der Weg des Grundwassers aus der Tiefe bis in den eigenen Keller ist in Berlin je nach Lage nicht weit. Wer bauen will, muss daher vorher wissen, wie hoch das Wasser in Zukunft maximal steigen kann. Welche Werte Fachkundige für bislang drei Viertel der Fläche Berlins prognostiziert haben, erfahren Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserstand (zeMHGW) Ob in Köpenick oder im Panketal: Wer in Berlin Versickerungsanlagen baut, muss vorher wissen, wie hoch das Grundwasser steht. Für Planer ist der Durchschnitt der zukünftig zu erwartenden Jahreshöchststände ein wichtiger Ausgangspunkt. Für etwa die Hälfte der Fläche Berlins ist er berechnet. Weitere Informationen Bild: Umweltatlas Berlin Wasserdurchlässigkeit des Untergrundes Asphalt und Beton versperren dem Regen in Berlin oft den Weg in den Untergrund. Damit er dennoch versickern kann, werden Anlagen gebaut. Dabei muss jedoch das Gestein unter der Erde mitspielen; denn durch Sand sickert Wasser zum Beispiel besser als durch geringer durchlässigen Geschiebemergel. Weitere Informationen Bild: Umweltatlas Berlin Geothermisches Potenzial Heizen mit Erdwärme? Klingt gut! Hier finden Sie Daten, wieviel Energie gewonnen werden kann und wie gut der Untergrund mit dem Wärmeentzug klarkommt. Weitere Informationen Bild: Umweltatlas Berlin Sickerwasser Wie lange brauchen Regen und andere Niederschläge, bis sie das Grundwasser erreichen? Diese Information ist wichtig, falls beim Versickern in den Untergrund Schadstoffe in tiefere Schichten gelangen. Wie der Schutz des Grundwassers einzuschätzen ist, erhalten Sie hier im Überblick. Weitere Informationen Bild: Umweltatlas Berlin Grundwasserqualität Was beeinflusst die Qualität des Grundwassers? Wo versickert Regenwasser? Durch welche Gesteinsschichten fließt es auf seinem Weg in den Untergrund? Welche Faktoren die Qualität des Grundwassers wie stark beeinflussen, erfahren Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Wasserschutzgebiete Berlin kann seinen Bedarf an Trinkwasser komplett aus dem Grundwasser unterhalb der Stadtfläche decken. Schutzzonen um die Förderbrunnen bewahren es vor Schadstoffen. Hier lesen Sie, wie Ihre Trinkwasserversorgung sichergestellt wird. Weitere Informationen Bild: Umweltatlas Berlin Hochwasser und Überschwemmungen Wo droht in Berlin ein Hochwasser? Wie viele Menschen oder wertvolle Kulturgüter wären davon betroffen? Und wie oft muss mit Überschwemmungen gerechnet werden? Diese Informationen sind wichtig für einen aktiven Hochwasserschutz und hier nachzulesen. Weitere Informationen Bild: Umweltatlas Berlin Starkregen- und Überflutungsgefahren Extreme Starkniederschläge können überall auftreten und jeden treffen, wobei die präzise örtliche und zeitliche Vorhersage solcher Ereignisse bisher noch sehr unsicher ist. Die flächendeckende Starkregenhinweiskarte und Starkregengefahrenkarten für einzelne Orte bieten eine Orientierungshilfe. Weitere Informationen Bild: Umweltatlas Berlin Gewässerstrukturgüte Unbefestigte Ufer, Sandbänke und unbebaute Auen sieht man an Berlins Gewässern nur noch an Teilen von Havel und Müggelsee. Der Mensch hat die Natur verändert – das beeinträchtigt die Güte der Gewässer. Sie wird in sieben Klassen gemessen. Wie Berlins Flüsse und Seen abschneiden, finden Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Gewässergüte (Chemie) Wieviel Phosphor ist im Landwehrkanal, wieviel Sulfat in der Spree entdeckt worden? Zahlreiche Messpunkte im Berliner Stadtgebiet sammeln verschiedene Daten zur Gewässergüte. Welche Faktoren die Qualität von Seen und Flüssen beeinflussen, erfahren Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Gewässergüte (Trophie) Berlins Gewässer fließen träge und sind voller Nährstoffe. Unter solchen Bedingungen wachsen Algen besonders gut. Zu viele nehmen dem Wasser jedoch den Sauerstoff und damit den Fischen die Luft zum Atmen. Hier finden Sie Daten zur Qualität der Berliner Flüsse und Seen der Jahre 1993 bis 2001. Weitere Informationen Bild: Umweltatlas Berlin Fischfauna Wo der Mensch Flüsse staut und Abwasser entsorgt, leben Fische nicht gerne. Über die Jahrhunderte ging der Fischbestand in den Berliner Gewässern daher zurück. Doch seit einigen Jahren kehren selbst verschollene Arten zurück. Was wo schwimmt, ist hier erfasst. Weitere Informationen
Der Datensatz enthält die Einzugsbereiche von Haltestellen des Hamburger Verkehrsverbunds (HVV) im Hamburger Stadtgebiet. Der Einzugsbereich (Realfußwegdistanz) von Fernverkehr, Regionalbahn (RE/RB/AKN), S-Bahn und U-Bahn beträgt 720 m um die Haltestellen, der Einzugsbereich von Bushaltestellen beträgt 480 m um die Haltestellen. Für die zugehörigen Haltestellen ist der Haltestelleneingang bzw. der Bahnsteigzugang maßgeblich. Bei großen Haltestellen gibt es entsprechend z.T. mehrere Haltestellenbereiche je Haltestelle. Der Datensatz enthält zudem verschiedene Attribute, wie z.B. den zugehörigen Haltestellennamen, die HaltestellenID, die Art des Transportmittels, die jeweiligen anfahrenden Liniennummern, die Anzahl der anfahrenden Linien (nur bei den Haltestellen), die Anzahl der Anfahrten pro Tag (nur bei den Haltestellen) und die Anzahl der erschlossenen Einwohner (nur bei den Einzugsbereichen). Der Datensatz wird vom HVV bereitgestellt und jährlich im Laufe des Frühjahrs auf den aktuellen Jahresfahrplan aktualisiert. Quellen für die Auswertung der Einzugsbereiche: Haltestellen des HVV mit dem Stand des jeweiligen Jahresfahrplans Fahrplandaten des HVV mit dem Stand des jeweiligen Jahresfahrplans zugrundeliegendes Fußwegenetz: OSM Aufbereitung aus 2020 zugrundeliegende Einwohnerdaten: Adressdaten aus Melderegister, Statistisches Amt für Hamburg und Schleswig-Holstein, Stand 31.12.2021
Bereiche der rezenten Auen und der Altauen. In Flussauen ist die Errichtung von WEA rechtlich grundsätzlich möglich. Es besteht jedoch eine höhere Wahrscheinlichkeit artenschutzrechtlicher und technischer Einschränkungen. Quelle: Sammeldokument zur Windflächenpotenzialstudie 2024 bearbeitet durch Bosch und Partner in Koop. mit Fraunhofer IEE.
Blei ist ein toxisches Schwermetall und infolge seiner vielfältigen industriellen Verwendung allgegenwärtig in der Umwelt verbreitet. Die Eintragsquellen sind nicht nur auf den Bereich von Erzvorkommen beschränkt (vor allem Bleisulfid sowie dessen Oxidationsminerale). Blei wird ebenfalls anthropogen über die Verhüttung von Blei-, Kupfer- und Zinkerzen, die weiträumige Abgasbelastung des Kraftfahrzeugverkehrs (bis zur Einführung von bleifreiem Benzin bis zu 60 % der atmosphärischen Belastung), Recyclinganlagen von Bleischrott, die Verwendung schwermetallhaltiger Klärschlämme und Komposte sowie durch Kohleverbrennungsanlagen in den Boden eingetragen . Für unbelastete Böden wird in Abhängigkeit vom Ausgangsgestein ein Pb-Gehalt von 2 bis 60 mg/kg angegeben. Die durchschnittliche Pb-Konzentration der oberen kontinentalen Erdkruste (Clarkewert) beträgt 17 mg/kg, der flächenbezogene mittlere Pb-Gehalt für die sächsischen Hauptgesteinstypen liegt bei 20 mg/kg. Die Gesteine Sachsens weisen keine bzw. nur eine geringe geochemische Spezialisierung hinsichtlich des Bleis auf. Im nördlichen bzw. nordöstlichen Teil Sachsens treten in den Oberböden über den Lockersedimenten des Känozoikums (periglaziäre Sande, Kiese, Lehme, Löss) und den Granodioriten der Lausitz relativ niedrige Pb-Gehalte auf. Bei den Lockersedimenten steigt der Pb-Gehalt mit zunehmendem Tongehalt leicht an. Die Verwitterungsböden über den Festgesteinen des Erzgebirges, Vogtlandes und z. T. der Elbezone haben meist deutlich höhere Bleigehalte, die durch eine relative Anreicherung in den Bodenausgangsgesteinen verursacht werden. Das am höchsten mit Blei belastete Gebiet in Sachsen ist der Freiberger Raum. Durch die ökonomisch bedeutenden polymetallischen Vererzungen (Pb-Zn-Ag), die auch flächenhaft relativ weit verbreitet sind, kam es zu einer besonders starken Pb-Anreicherung in den Nebengesteinen und folglich auch bei der Bildung der Böden über den Gneisen. Zusätzlich entstanden enorme anthropoge Belastungen durch die Jahrhunderte währende Verhüttung der Primärerze und in jüngerer Zeit beim Recycling von Bleibatterien. Besonders hohe Pb-Gehalte treten dabei in unmittelbarer Nähe der Hüttenstandorte einschließlich der Hauptwindrichtungen, im Zentralteil der Quarz-Sulfid-Mineralisationen und in den Flussauen auf. Weitere Gebiete mit großflächig erhöhten Pb-Gehalten liegen vor allem im Osterzgebirge, in einem Bereich, der sich von Freiberg in südöstliche Richtung bis an die Landesgrenze im Raum Altenberg erstreckt und in den Erzrevieren des Mittel- und Westerzgebirges, so um Seiffen, Marienberg - Pobershau, Annaberg, Schneeberg, Schwarzenberg und Pöhla. Der Anteil von Pb-Mineralen in den Erzen dieser Regionen ist jedoch deutlich geringer. Durch häufige Vergesellschaftung von Pb und As in den Mineralisationen ist das Verbreitungsgebiet der erhöhten Pb-Gehalte im Osterzgebirge und untergeordnet im Westerzgebirge sowie in den Auen der Freiberger und Vereinigten Mulde der des Arsens ähnlich. Die Auenböden der Freiberger Mulde führen ab dem Freiberger Lagerstättenrevier extrem hohe Bleigehalte, die sich bis in die Auenböden der Vereinigten Mulde in Nordwestsachen fortsetzen. Die Auen der Elbe und der Zwickauer Mulde weisen durch geogene bzw. anthropogene Quellen (Lagerstätten, Industrie) im Einzugsgebiet ebenfalls Bereiche mit höheren Bleigehalten auf. Die Bleigehalte der Böden im Raum Freiberg und in den Auenböden der Freiberger und Vereinigten Mulde überschreiten z. T. flächenhaft die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)
Der INSPIRE-Dienst Verteilung der Arten (Tierarten gemäß Concept URL: http://www.eionet.europa.eu/gemet/concept/10073 und Pflanzenarten gemäß Concept URL: http://www.eionet.europa.eu/gemet/concept/8908) gibt einen Überblick über die Verteilung der Tier-, Pflanzen und Pilzarten im Freistaat Thüringen. Der Datensatz entstammt dem Thüringer Arten-Erfassungsprogramm, welches 1992 bei der Thüringer Landesanstalt für Umwelt und Geologie (jetzt TLUBN) aufgebaut wurde. Der Datenbestand wird seitdem kontinuierlich aktualisiert, erweitert und ausgewertet. Erfassungsschwerpunkte sind: • gefährdete Arten • gesetzlich besonders und streng geschützte Arten • sonstige faunistisch und floristisch bemerkenswerte Arten. Weiterhin werden Arten in bestimmten Gebieten wie Schutzgebieten und schutzwürdigen Bereichen vertieft erfasst. Zu den Artendaten zählen bzgl. der Fauna die Unterteilungen Amphibien, Fische / Rundmäuler, Reptilien, Säugetiere, Vögel, Heuschrecken, Käfer, Libellen, Spinnentiere, Schmetterlinge, Weichtiere und weitere Wirbellosengruppen. Der Datensatz der in Thüringen vorkommenden Pflanzen- und Pilzarten beschränkt sich zunächst auf folgende Artengruppen: Farn- und Blütenpflanzen, Moose, Flechten, Armleuchteralgen, Süßwasser-Rotalgen und „Groß-Pilze“ (Fungi). Mittelfristig ist vorgesehen, dieses Spektrum um die phytoparasitischen Kleinpilze zu erweitern. Großteils stammen die faunistischen Daten aus der Zeit ab 1985; es sind aber auch historische Daten enthalten. Datenquellen sind u. a. Beobachtungen aus Gutachten im Auftrag der Naturschutzverwaltung (Schutzwürdigkeitsgutachten, Artenhilfsprogramm-Basis-Erhebungen, regionale Erfassungen...), aus Faunistik-Projekten, ehrenamtliche Kartierungen, andere Gutachten, soweit hierfür Ausnahmegenehmigungen erforderlich waren, sowie Literatur. Die Daten der Pflanzen und Pilze entstammen ebenfalls unterschiedlichen Datenquellen. Dazu gehören Auswertungen von Publikationen von Mitte des 16. Jahrhunderts bis heute sowie die fortlaufende Auswertung neu erscheinender Literatur. Weitere Datenquellen sind Herbarien, unveröffentlichte Gutachten und akademische Abschlussarbeiten sowie unsystematische Einzelmeldungen. Der größte Teil der Daten geht jedoch auf systematische Erhebungen seit Ende des 20. Jahrhunderts zurück, die durch ehrenamtliche Fachvereinigungen und ihrer Mitglieder (z. T. in Kooperation des TLUBN und seiner Vorgänger) erfasst wurden (Thüringische Botanische Gesellschaft e. V., Arbeitskreis Heimische Orchideen e. V., Thüringer Arbeitsgemeinschaft Mykologie e. V., bryologisch-lichenologische Artenkenner etc.). Bei einzelnen Artengruppen gehen die meisten Daten auf das Engagement einzelner Personen zurück (Armleuchteralgen, Süßwasser-Rotalgen). Der Datenbestand ist bezüglich der verschiedenen Arten wie bezüglich der regionalen Erfassungsintensität und Datendichte pro Flächeneinheit heterogen und daher unterschiedlich repräsentativ. So liegen z. B. floristische Daten, die vor 2000 erhoben wurden und für „kommune“ Arten oft nur Rasterangaben vor. Punktgenaue Daten wurden im Wesentlichen nach dem Jahr 2000 und meistens nur für seltene und gefährdete oder sonstige bemerkenswerte Arten erfasst. Es ist daher stets an Hand der Recherche-Ergebnisse zu prüfen, ob die Artendaten für den vorgesehenen Zweck ausreichend sind oder ob weitere Recherchen / Kartierungen erforderlich sind. Weiterhin ist zu betonen, dass in Deutschland alle Artangaben zunächst so aufgenommen werden, wie sie in der entsprechenden Quelle enthalten sind. Der vorliegende Datenbestand ist folglich eine Nachschlagemöglichkeit für diese Daten. Deshalb ist vor der Ableitung weitreichender Konsequenzen aus dem Vorkommen einzelner Arten die Plausibilität und Aktualität des entsprechenden Artvorkommens zu prüfen. Entsprechend der EU-Richtlinie INSPIRE liegt der Datensatz als Grid auf Basis der flächentreuen Lambert Azimutal-Projektion (ETRS89-LAEA-Raster) mit einer Rasterweite von 10 km vor.
| Origin | Count |
|---|---|
| Bund | 1253 |
| Europa | 6 |
| Kommune | 15 |
| Land | 1555 |
| Wissenschaft | 88 |
| Zivilgesellschaft | 19 |
| Type | Count |
|---|---|
| Bildmaterial | 6 |
| Daten und Messstellen | 847 |
| Ereignis | 18 |
| Förderprogramm | 626 |
| Kartendienst | 12 |
| Taxon | 30 |
| Text | 592 |
| Umweltprüfung | 65 |
| WRRL-Maßnahme | 45 |
| Wasser | 19 |
| unbekannt | 541 |
| License | Count |
|---|---|
| geschlossen | 972 |
| offen | 1619 |
| unbekannt | 191 |
| Language | Count |
|---|---|
| Deutsch | 2664 |
| Englisch | 474 |
| Resource type | Count |
|---|---|
| Archiv | 76 |
| Bild | 103 |
| Datei | 299 |
| Dokument | 820 |
| Keine | 1088 |
| Multimedia | 1 |
| Unbekannt | 19 |
| Webdienst | 189 |
| Webseite | 1345 |
| Topic | Count |
|---|---|
| Boden | 1550 |
| Lebewesen und Lebensräume | 1958 |
| Luft | 1069 |
| Mensch und Umwelt | 2758 |
| Wasser | 2182 |
| Weitere | 2756 |