Das Projekt "Solar Steam Reforming of Methane Rich Gas for Synthesis Gas Production (SOLREF)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. Project main goals: The main purpose of this project is to develop an innovative 400 kWth solar reformer for several applications such as Hydrogen production or electricity generation. Depending of the feed source for the reforming process CO2 emissions can be reduced significantly (up to 40 percent using NG), because the needed process heat for this highly endothermic reaction is provided by concentrated solar energy. A pre-design of a 1 MW prototype plant in Southern Italy and a conceptual layout of a commercial 50 MWth reforming plant complete this project. Key issues: The profitability decides if a new technology has a chance to come into the market. Therefore several modifications and improvements to the state-of-the-art solar reformer technology will be introduced before large scale and commercial system can be developed. These changes are primarily to the catalytic system, the reactor optimisation and operation procedures and the associated optics for concentrating the solar radiation. For the dissemination of solar reforming technology the regions targeted are in Southern Europe and Northern Africa. The potential markets and the impact of infrastructure and administrative restrictions will be assessed. The environmental, socio-economic and institutional impacts of solar reforming technology exploitation will be assessed with respect to sustainable development. The market potential of solar reforming technology in a liberalised European energy market will be evaluated. Detailed cost estimates for a 50 MWth commercial plant will be determined.
Das Projekt "Effects of nurse tree species on growth, environment and physiology of underplanted Toona ciliata (F. Muell.)" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Waldbau-Institut durchgeführt. Toona ciliata (Australian red cedar) is highly valued for veneer and furniture production and endangered in its natural ecosystems due to exploitation. This work aims to improve the availability of this wood on the market and help reduce pressure on the species in its native environment. An afforestation project cultivating Toona ciliata was introduced to the study site in Misiones, Argentina. The local cultivation faces losses caused by drought and frost, because T. ciliata requires overstory protection when young. Consequently, Grevillea robusta, Pinus elliottii x Pinus caribaea, and Pinus taeda, nurse tree species which also produce sought-after wood were chosen to provide protection. One-year-old T. ciliata seedlings were planted underneath each of the six-year-old nurse species. An inventory after one year indicated that both survival and height increment were highest underneath G. robusta and lowest underneath P. elliottii x P. caribaea. In this study I am examining possible facilitation and competition mechanisms between the overstory and understory T. ciliata. Extensive empirical data collected over the course of 3 years will be utilized to project potential growth scenarios for several rotations using a computer based forest growth model.
Das Projekt "Improved Methods for the Assessment of the Generic Impact of Noise in the Environment (IMAGINE)" wird vom Umweltbundesamt gefördert und von Müller-BBM Gesellschaft mit beschränkter Haftung durchgeführt. For the production of strategic noise maps as required under the EU Directive 2002/49/EC, improved assessment methods for environmental noise will be required. Noise from any major source, be it major roads, railways, airports or industrial activities in agglomerations, needs to be included in the noise mapping. For road and rail, improved methods will be developed in the 5th frame work Harmonoise project. These methods will be adopted to develop methods for aircraft and industrial noise in the IMAGINE project proposed here. Noise source databases to be developed in IMAGINE for road and rail sources will allow a quick and easy implementation of the methods in all member states. Measured noise levels can add to the quality of noise maps because they tend to have better credibility than computed levels. In the project proposed here, guidelines for monitoring and measuring noise levels will be developed, that can contribute to a combined product (measurement and computation) that has high quality and high credibility. Noise action plans shall be based on strategic noise maps. The IMAGINE project will develop guidelines for noise mapping that will make it easy and straightforward to assess the efficiency of such action plans. Traffic flow management will be a key element of such action plans, both on a national and a regional level. Noise mapping will be developed into a dynamic process rather than a static presentation of the situation. IMAGINE will provide the link between Harmonoise and the practical process of producing noise maps and action plans. It will establish a platform where experts and end users can exchange their experience and views. This platform should continue after the project and provide a basis for exploitation to the IMAGINE results. me Contractor: Detalrail B.V.; Utrecht; Netherlands.
Das Projekt "Solar and Wind Energy Resource Assessment (SWERA)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. The project SWERA will provide solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development. It will demonstrate the use of these instruments in investment and policy decision making and build local capacities for their continuous use. The project will enable private investors and public policy makers to assess the technical, economic and environmental potential for large-scale investments in technologies that enable the exploitation of two increasingly important sources of renewable energy. During this pilot project, tools for analysis and use of resource information will be developed, a global archive and review mechanism will be initiated, regional/national solar and wind resource maps generated and national assessment demonstrations performed. The overall goal is to promote the integration of wind and solar alternatives in national and regional energy planning and sector restructuring as well as related policy making. The project will enable informed decision making and enhance the ability of participating governments to attract increased investor interest in renewable energy. Thirteen countries will be directly involved in the pilot stage of the project. Global and regional maps will be available to all developing countries. The German Aerospace Center (DLR) will provide high resolution solar maps of the Direct Normal Irradiation. This is particularly important for concentrating solar power collectors. DLR will work with SUNY and INPE/LABSOLAR to integrate their high-resolution horizontal total radiation model. DLR and TERI will jointly execute the South Asian mapping using INSAT and METEOSAT-5 data. DLR will provide advice to national executing agencies and stakeholders on their activities and assist in the comparison of measurements and different mapping models.
Das Projekt "TRansitions to the Urban Water Services of Tomorrow (TRUST)" wird vom Umweltbundesamt gefördert und von IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH durchgeführt. The European project initiative TRUST will produce knowledge and guidance to support TRansitions to Urban Water Services of Tomorrow, enabling communities to achieve sustainable, low-carbon water futures without compromising service quality. We deliver this ambition through close collaboration with problem owners in ten participating pilot city regions under changing and challenging conditions in Europe and Africa. Our work provides research driven innovations in governance, modelling concepts, technologies, decision support tools, and novel approaches to integrated water, energy, and infrastructure asset management. An extended understanding of the performance of contemporary urban water services will allow detailed exploration of transition pathways. Urban water cycle analysis will include use of an innovative systems metabolism model, derivation of key performance indicators, risk assessment, as well as broad stakeholder involvement and an analysis of public perceptions and governance modes. A number of emerging technologies in water supply, waste and storm water treatment and disposal, in water demand management and in the exploitation of alternative water sources will be analysed in terms of their cost-effectiveness, performance, safety and sustainability. Cross-cutting issues include innovations in urban asset management and water-energy nexus strengthening. The most promising interventions will be demonstrated and legitimised in the urban water systems of the ten participating pilot city regions. TRUST outcomes will be incorporated into planning guidelines and decision support tools, will be subject to life-cycle assessment, and be shaped by regulatory considerations as well as potential environmental, economic and social impacts. Outputs from the project will catalyse transformation change in both the form and management of urban water services and give utilities increased confidence to specify innovative solutions to a range of pressing challenges.
Das Projekt "Methods and algorithms for data exploitation of the imaging Fourier transform spectrometer GLORIA-AB on HALO - MaxiFTS -" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung - Atmosphärische Spurenstoffe und Fernerkundung (IMK-ASF) durchgeführt. GLORIA combines a Michelson interferometer with a detector array of 128 x 128 pixels and will be the first 2D infrared limb imaging spectrometer worldwide. It is designed for HALO and will measure the distribution of temperature and a considerable number of trace constituents along with cloud mapping with unprecedented spatial resolution in the free troposphere and lower stratosphere. It is an essential contribution to the HALO demo missions TACTS, POLSTRACC, and CIRRUS-RS. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration / characterisation and for algorithm development. The work of the first proposal focused on characterisation and modeling of the instrument and on the development of methods and algorithms which are capable of generating calibrated spectra with high accuracy. Accurately calibrated spectra are a prerequisite for the retrieval of atmospheric parameters and the scientific data exploitation. Within this renewal proposal the developed characterisation methods will be applied to the instrument in flight configuration, and the new algorithms will be used to generate highly accurate calibrated spectra from the raw interferograms measured during the HALO demo missions. The work will be completed by a thorough error analysis for the calibrated spectra. Finally, instrument settings, calibration scenario and data processing shall be optimised with respect to data quality. This proposal contributes to the development of high technology sensors and instruments for the use on HALO.
Das Projekt "6. RP Aquaterra - Understanding river-sediment-soil-groundwater interactions for support of management of waterbodies (river basin & catchment areas) (AQUATERRA)" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften durchgeführt. 46 Partner arbeiteten in diesem EU-Projekt zusammen. Ziel war es, eine wissenschaftliche Basis zu erhalten, um die Bewirtschaftung eines Flussgebietes zu verbessern. Dabei stand das genaue Verständnis des Fluss-Sediment-Boden-Grundwasser Systems als Ganzes zu verschiedenen zeitlichen und räumlichen Modellen im Vordergrund. Das An-Institute arbeitete im MONITOR-Unterprojekt mit. Seine Aufgaben lagen in der Entwicklung und Validierung analytischer Methoden, um organische und anorganische Schadstoffe in Wasser-, Sediment- und Bodenkompartimente zu erfassen. Start dieses 5jährigen Projektes war am 01. Juni 2004.
Das Projekt "Development of new intermodal loading units and dedicated adaptors for the trimodal transport of bulk materials in Europe (TRIMOTRANS)" wird vom Umweltbundesamt gefördert und von Zentrum für angewandte Forschung und Technologie e.V. durchgeführt. Objective: The constitution of the common European market is accompanied by continuously increasing cross-border goods and passenger traffic. Road transportation is facing a rapidly increasing congestion whilein the contrary the available capacities in railway transportation as well as inland waterwaytransportation are being underutilised. A redistribution of the carriage of goods is urgently needed, but up to now the most important obstacles consists in the incompatible interfaces between the various carriers and the diversity of loading devices being used in the EU. Main objective of the project is the development of new intermodal loading units including devices (ISO-bulk container and Roll-off container), capable adaptors and mobile fixtures suitable for the trimodal transport of bulk and packaged goods at road, railway and inland waterways. Essential element of the project is the design and integration of innovative adaptors for lifting and shifting operations of the loading units. This will lead to an optimum on intermodal compatibility. The goals are in conformity with the aims of the Specific Programme 'Sustainable Surface Transport', research domain 3.16. 'Development of equipment for fast loading / unloading of intermodal transport units'. By application of the new loading units the logistic chain can be set up without changing the loading unit throughout the whole door-to-door transport process. The transhipping procedures do not require crane technology any more and the costs will be reduced substantially. The uniformity of the specialinternal features as well as the compliance with the ISO-container dimensions will contribute to the harmonisation of loading units. The projects includes the development of containers, adaptors and mobile units, test and demonstration of two prototypes and dissemination and exploitation of the results. The consortium consists of ten partner with six SMEs from five countries (G, HU, CH, A,CR)
Das Projekt "Enhancing public awareness on the results of Global Change and Ecosystems research actions through television media (GLOBALCHANGE-TV)" wird vom Umweltbundesamt gefördert und von Elmar Bartlmä durchgeführt. The strategic objective of GLOBALCHANGE-TV is to contribute to the development of public awareness on European Global Change and Ecosystems research in all European countries through television media. This objective will be reached through the following activities: - Pilot an innovative media-driven TV communication model for the Global Change and Ecosystems Priority projects. - Fill the existing communication gap between the technical content vehiculed by the Global Change and Ecosystems research and the understanding skills of the general public - Identify the key results of the Global Change and Ecosystems Priority, through the permanent consultation of its relevant constituencies (including the Commission Services and an in-depth punctual research towards individual Global Change and Ecosystems projects. - Create a series of a minimum of 10 high-quality free-of-rights Video News Releases (VNRs) for the general public on the basis of the key results of the research. - Include GLOBALCHANGE-TV audiovisual productions into the scientific and news TV broadcasting mainstreams of major national TV channels in all 25 EU countries. - Collect actual broadcasts made by European TV stations and include them on a DVD at the end of the project, for future use and exploitation. - Monitor the progress of the project and assess its achievements and success, by assessing the overall media impact of the project. The expected, measurable results of the GLOBALCHANGE-TV project are: - To have each of its audiovisual production broadcast by at least 8 major national TV stations throughout Europe. - To reach an overall public TV audience of several tens of millions people. - To track as many broadcasts as possible and to retrieve, for each broadcast, broadcasters' edit. - To provide a measure of the overall media impact of the project. Prime Contractor: Icons S.R.L.; Castelnuovo Bocca Dadda; Italy.
Das Projekt "Improvement of forest management key strategies: a contribution to conservation and sustainable land use" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Waldbau durchgeführt. In spite of a variety of efforts, tropical forests are still threatened by exploitation and conversion to agricultural land-use. Besides legal protection, sustainable management concepts are essential for stable conservation of these ecosystems. This project aims at identifying and optimizing the potentials for forest management for three different ecosystems (Dry Forest, Tropical Mountain Rain Forest, Paramo) along a height- and climate gradient in Southern Ecuador. Therefore, multiple and locally differentiated aspects of forest management have to be considered: the direct provision of goods (timber and non-timber forest products) as well as ecosystem services (carbon sequestration, water regulation), which are of increasing importance; moreover, the effects of forest management on biodiversity and the impacts of climate change on resilience indicators and the potential distribution of selected species with high potential for sustainable management or conservation should be investigated. First of all, the most important forest structure types and possible improvements of management alternatives have to be identified at the three sites for the assessment of different management concepts. The alternatives will be tested on experimental field plots and consequently monitored for their impacts on the locally most important criteria of forest management. A sound decision support tool will be developed, taking into account uncertainties with regard to input parameters and the relevance of different criteria of forest management. Therefore, Multi Criteria Decision Analysis will be used to generate locally adapted management concepts for the different ecosystems. Those concepts should be able to consider the multiple functions of forest management and will represent the forestry component in sustainable land-use models. The comprehensive studies will be carried out in close cooperation with other scientific teams from Germany and Ecuador as well as local institutions of relevance for forest management. The direct involvement of Ecuadorian students and young academics and the integration of the investigations in educational concepts will contribute to capacity building and local efforts for the enhancement of environmental competencies. Moreover, the experimental field plots will serve in parts as demonstration objects for the implementation of sustainable forest management concepts.
Origin | Count |
---|---|
Bund | 54 |
Type | Count |
---|---|
Förderprogramm | 54 |
License | Count |
---|---|
open | 54 |
Language | Count |
---|---|
Deutsch | 54 |
Englisch | 52 |
Resource type | Count |
---|---|
Keine | 38 |
Webseite | 16 |
Topic | Count |
---|---|
Boden | 50 |
Lebewesen & Lebensräume | 53 |
Luft | 35 |
Mensch & Umwelt | 54 |
Wasser | 44 |
Weitere | 54 |