API src

Found 138 results.

B 5.1: Fate of agrochemicals in integrated farming systems in Son-La province, Northern Vietnam

Das Projekt "B 5.1: Fate of agrochemicals in integrated farming systems in Son-La province, Northern Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Biogeophysik durchgeführt. In Son La province, Northern Vietnam, many irrigated farming systems include ponds in which small-scale farmers raise fish to produce additional food and income. The main field crops in this area are paddy rice and maize. Often, irrigation water is first used in paddy fields, before it flows to the fishponds. Because farmers regularly apply considerable amounts of agrochemicals, mainly insecticides, to field crops fish production suffers. Moreover, agrochemicals may enter the human food chain. Subproject B5.1 will study the fate of agrochemicals applied in two subcatchments near Yen Chau, Son La province. Investigations will be carried out in close collaboration with A1.3, B4.1, C4.1, D5.2, and G1.2. In the two subcatchments, fishponds have been investigated by D5.1 since 2003. We will carry out a survey of the subcatchments with special emphasis on the water distribution systems (fields, ponds, canals, brooks). The data will be linked to the GIS (Geographical Information System) set up by B4.1. In one subcatchment, B5.1 will install a weather station as well as five TDR (time do-main reflectometry) probes and tensiometers. Water flow through the system will be recorded by means of water meters and V-shaped (Thompson) weirs equipped with automatic pressure sensors. Soil and water samples from selected fields sites, pond inflows, and ponds will be regularly screened for agrochemicals using the procedure developed by B2.1 (Ciglasch et al., 2005; see below). Soil and sediment characteristics that determine water regime and soil-agrochemical interaction, e.g. texture, organic carbon content, hydraulic conductivity, partitioning coefficients, and half-life times will be measured in laboratory and field experiments in cooperation with B4.1. In preparation for the next phase, discharge will be assessed and agrochemical concentrations monitored in the main catchment.

Element cycles in mountain regions under various land use

Das Projekt "Element cycles in mountain regions under various land use" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Agrarökosystemforschung durchgeführt. Research question: What is the role of agricultural land use in changes of nutrient cycles and losses dependingon surface slope and climate? Approach: Annual balance of main nutrients for 3-4 main agricultural farms based on fertilizer input, partitioning of nutrients in above and below ground plant parts, output with harvest, losses with DOM and erosion (in collaboration with other TP). The balances will be done depending on agricultural practices in Eger and Haean Catchment and will be compared with adjacent grassland and forest. Obtained element cycles will be upscaled from farm area to the level of both catchments basins depending on specific land use, surface slope and climate. Research question: Can we reconstruct previous erosion and nutrient losses and separate them under forest and under agricultural use? Approach: Undisturbed sediment cores (7 for Eger and 7 for Haean) will be taken from the lakes and soils of landscapes subordinated to agricultural fields. Three radiocarbon data of wood particles at increasing depth for each sediment core will be used as references. The age of the bottom sediment layer should be less than 1000 years. The total content of C, N, P, K, Mg, Ca, Si will be analyzed in individual laminae or sediment layers. Conclusions will be drawn based on the thickness of the laminae, their elements content and the ratio between nutrients and Si. The conclusions will be proven by 13C (vegetation change) and 15N (N input by fertilizers) of individual laminae. Research question: What are the best management practices for sloping uplands? Approach: Measured element cycles and losses under various agriculture practice will be analysed and practices with the least nutrient losses and erosion will be selected. The best management practices for landscapes with different slopes will be elaborated.

B 4.1: Land vulnerability and land suitability analysis in Northern Vietnam

Das Projekt "B 4.1: Land vulnerability and land suitability analysis in Northern Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. As populations are steadily increasing in VN, farming land becomes scarce and new areas are opened up for cultivation, mainly in mountainous regions. On the fragile steep slopes deforestation and soil erosion are the well-known consequences. Land use in Yen Chau District, the study area in Son La, has significantly changed in the last decades. Until now, mainly soil degradation is reported on upland fields, but also soil erosion is increasing, both decreasing crop yields. In this project a database for topography, land use and soil properties within two subcatchments in Yen Chau will be created. The main goal of the project will be to carry out land suitability analysis and land vulnerability analysis, based on the data stored in the database, to provide tools for future sustainable land use planning. For this, a broad approach is intended by assessing land suitability for various crops, fruit trees and livestock production as well as to work out land vulnerability of the research area based on soil characteristics and topographic situation. The land suitability and vulnerability analysis will be carried out with the adopted SOTER (Soil and Terrain) approach. Normally used for a 1:500000 scale the SOTER technology will be developed for a 1:50.000 scale for two subcatchments. This is especially necessary because the closely cooperating projects C4.1 (Land use modelling), B5.1 (Water quality analysis) and G1.2 (Sustainability strategies) will rely on the spatial data of this scale. A totally new objective will be attempted by breaking down the SOTER technology to a scale of 1:5.000 for a village area in one of the selected subcatchments to regard the typical small-scale land use mosaic of a village area. Only with this scale the typical small scale land use mosaic of a village area can relatively precisely be mapped taking settlement areas, fish ponds, homegardens, fields, pastures, forests and scrubland as well as streams and creeks into account. With this approach it will be the first time possible to evaluate agricultural production on a village level using the SOTER technology. The SOTER database will be used with algorithms and soil transfer functions in order to derive soil suitability and soil vulnerability of certain areas. For the suitability analysis of different crops mainly the static approach for water regime, nutrient regime and potential root zone will be generated. As an important tool for decision making the erosion hazards due to water and especially gravity has to be visualized. As participatory soil mapping provides valuable additional information for land use evaluation and potential planning, this approach will be integrated on both the subcatchment and the village level in joint cooperation with A1.3 (Participatory Research). Finally, land use scenarios regarding different factors, e.g. change of cropping patterns, introduction of fruit trees, intensification of fish production or changes in market access, will be modelled.

B 2: Lateral water flow and transport of agrochemicals - Phase 1

Das Projekt "B 2: Lateral water flow and transport of agrochemicals - Phase 1" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The project aims at developing a model of the dynamics of agrochemicals (fertilisers, pesticides) and selected heavy metals on a regional scale as a function of cropping intensity in the highland areas of Northern Thailand. The model shall predict the effects of cropping intensity on mobility and leaching of agrochemicals in the agriculturally used system itself but also on the chemical status of neighbouring ecosystems including downstream areas. The methods for measuring and estimating the fluxes of agrochemicals in soils will be adapted to the conditions of the soils and sites in Northern Thailand. Fluxes of agrochemicals will be measured in fruit tree orchards on the experimental sites established together with projects B1, C1 and D1. Also, processes governing the dynamics of agrochemicals will be studied. The objectives for the first phase are as follows: - To identify suitable study sites - To establish the methods for measuring the fluxes of agrochemicals in the study sites - To adopt the analytical procedures for pesticides - To identify and parametrise the processes governing the mobility of agrochemicals - To identify the major chemical transformation processes for agrochemicals in the soils of the project area - To establish models of the fate of agrochemicals an the plot scale. Dynamics of agrochemicals include processes of mobilisation/immobilisation, degradation and transport. Both, experiments and field inventories are needed to elucidate the complex interaction of the various processes. Field measurements of the fluxes of nutrient elements (N, P, K, Ca, Mg, Mn, Zn, Cu), pesticides and some heavy metals will be conducted at different regional scales (plot, agricultural system, small catchment, region). Laboratory and field experiments consider chemical, physicochemical and biological processes. Biological processes and degradation of pesticides will not be considered in the first phase of the project, however, they should be included later on. The project as a whole is broken down into three essential parts, which consecutively follow each other. The subproject is methods- and processes-orientated. Methods, which were developed in Hohenheim to quantify the fluxes of chemicals in soils have to be adapted to meet the requirements of the specific conditions in the study area. Recently, these methods are already under development in tropical environments (Vietnam, Costa Rica). After adaptation the methods will be used to yield flux data on the plot scale. These data are needed to help deciding which of the hypothesised processes are of major importance for modelling the dynamics of agrochemicals. The final outcome of this project phase are models of the fate of agrochemicals as a function of management intensity on the plot scale.

Impact of transgenic crops on fertility of soils with different management history

Das Projekt "Impact of transgenic crops on fertility of soils with different management history" wird vom Umweltbundesamt gefördert und von Forschungsinstitut für biologischen Landbau Deutschland e.V. durchgeführt. What impact does transgenic maize have on soil fertility? Among the factors that determine soil fertility is the diversity of the bacteria living in it. This is in turn affected by the form of agriculture practiced on the land. What role do transgenic plants play in this interaction? Background Soil fertility is the product of the interactions between the parental geological material from which the soil originated, the climate and colonization by soil organisms. Soil organisms and their diversity play a major role in soil fertility, and these factors can be affected by the way the soil is managed. The type of farming, i.e. how fertilizers and pesticides are used, has a major impact on the fertility of the soil. It is known that the complex interaction of bacterial diversity and other soil properties regulates the efficacy of plant resistance. But little is known about how transgenic plants affect soil fertility. Objectives The project will investigate selected soil processes as indicators for how transgenic maize may possibly alter soil fertility. The intention is in particular to establish whether the soil is better able to cope with such effects if it contains a great diversity of soil bacteria. Methods Transgenic maize will be planted in climate chambers containing soils managed in different ways. The soil needed for these trials originates from open field trials that have been used for decades to compare various forms of organic and conventional farming. These soils differ, for example, in the way they have been treated with pesticides and fertilizers and thus also with respect to their diversity of bacteria. The trial with transgenic maize will measure various parameters: the number of soil bacteria and the diversity of their species, the quantity of a small number of selected nutrients and the decomposition of harvest residues. It will be possible to conclude from this work how transgenic plants affect soil fertility. Significance The project will create an important basis for developing risk assessments that incorporate the effects of transgenic plants on soil fertility.

Bees in Europe and Sustainable Honey Production (BEE SHOP)

Das Projekt "Bees in Europe and Sustainable Honey Production (BEE SHOP)" wird vom Umweltbundesamt gefördert und von Universität Halle-Wittenberg, Fachbereich Biologie, Institut für Zoologie, Arbeitsgruppe Molekulare Ökologie durchgeführt. Honey is among the oldest food products of mankind and beekeeping is deeply rooted in every European culture. Numerous European and national regulations control honey quality, which reflects both the high nutritional and societal value of the product. Yet in an environment with increasing chemical pollution and the wide use of agrochemicals, honey runs high risks of becoming chemically polluted. In addition a broad spectrum of chemicals is used to treat honeybee diseases, further contaminating honey with sometimes highly toxic compounds. The BEE SHOP is a network of ten leading European honeybee research groups in honey quality, pathology, genetics and behaviour as well as selected beekeeping industries, which all share a common interest in promoting Europe's high honey quality standards. The prime goal is to reduce potential sources of honey contamination due to both foraging contaminated nectar and chemotherapy of honeybee diseases. The BEE SHOP will therefore deal with the development of biological resistance to pests and pathogens to avoid chemotherapy. Various European honeybee races and populations will be screened for their disease resistance potential to the main pressing pathogens. Differences in foraging patterns among European honeybees and their underlying mechanisms will be studied to identify behavioural traits reducing contamination. Differences in disease susceptibility will be genetically analysed by QTL mapping. Major loci in the genome will be identified with the aid of the published honeybee genome. SNPs will be developed to allow for selection of specific target genes in both drones and queens before insemination. This will greatly accelerate the selection progress in honeybee breeding allowing for the swift establishment of resistant but efficient stock. New tools for testing honey quality and authenticity will be developed to allow inspections of honey according to the current EC directives on honey quality and organic beekeeping.

Biomass Fuell Cell Utility System (BIOCELLUS)

Das Projekt "Biomass Fuell Cell Utility System (BIOCELLUS)" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Fakultät für Maschinenwesen, Lehrstuhl für Energiesysteme durchgeführt. Objective: Energy from Biomass needs highly efficient small-scale energy systems in order to achieve cost effective solutions for decentralized generation especially in Mediterranean and Southern areas, and for applications without adequate heat consumer. Thus fuel cells are an attractive option for decentralized generation from biomass and agricultural residues but they have to meet at least two outstanding challenges: 1. Fuel cell materials and the gas cleaning technologies have to treat high dust loads of the fuel gas and pollutants like tars, alkalines and heavy metals. 2. The system integration has to allow efficiencies of at least 40-50 percent even within a power range of few tens or hundreds of kW. This proposal addresses in particular these two aims. Hence the first part of the project will focus on the investigation of the impact of these pollutants on degradation and performance characteristics of SOFC fuel cells in order to specify the requirements for appropriate gas cleaning system (WP 1-2). These tests will be performed at six existing gasification sites, which represent the most common and applicable gasification technologies. WP 3 will finally test and demonstrate the selected gas cleaning technologies in order to verify the specifications obtained from the gasification tests. The results will be used for the development, installation and testing of an innovative SOFC - Gasification concept, which will especially match the particular requirements of fuel cell systems for the conversion of biomass feedstock. The innovative concept comprises to heat an allothermal gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This so-called TopCycle concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.

Is the immune system required to adapt to flowering time change?

Das Projekt "Is the immune system required to adapt to flowering time change?" wird vom Umweltbundesamt gefördert und von Universität Köln, Biozentrum, Botanisches Institut durchgeführt. For effective crop improvement, breeders must be able to select on relevant phenotypic traits without compromising yield. This project proposes to investigate the evolutionary consequences of flowering time modifications on a second trait of major importance for plant breeding: immunity. This will have implications both for understanding cross-talks between flowering time and defense network and for developing efficient breeding strategies. There is clear evidence that plant maturity influences levels and effectiveness of defense. Theoretical models actually predict that changes in life-history can modulate the balance between costs and benefits of immunity. Simultaneously, actors of the immune system have often been observed to alter flowering time. Two alternative and possibly complementary hypotheses can explain this link: genetic constraints due to the pleiotropic action of players in either systems, or co-evolution, if flowering-time changes modulate the cost-benefit balance of immunity. We will conduct field assays in Arabidopsis thaliana, using constructed lines as well as recombinant inbred lines and natural accessions, to differentiate the action of the two explanatory hypotheses. Using transcriptome analyses, we will identify defense genes associating with flowering time modification (f-t-a defense genes). We will quantify their expression along the assay and test whether it varies with both flowering time and fitness. We will further test whether flowering time and immunity interact to determine yield in tomato and potato.

Impacts of Pico-photovoltaic Systems Usage

Das Projekt "Impacts of Pico-photovoltaic Systems Usage" wird vom Umweltbundesamt gefördert und von Rheinisch-Westfälisches Institut für Wirtschaftsforschung e.V. RWI, Kompetenzbereich Umwelt und Ressourcen durchgeführt. In recent years, costs of both LED lighting diodes and photovoltaic (PV) systems have decreased substantially. In widely non-electrified rural Africa, this has induced a silent revolution, the market based dissemination of dry-cell battery or solar driven small LED lanterns in rural areas. These devices are in many cases of a very low quality, which might threat the sustainability of these new markets by a loss of trust among customers. The international community has responded to this development by promoting so-called Pico-PV systems that meet sufficient quality standards. Supported by the Dutch Daey Ouwens Fund, the British company ToughStuff Ltd. has recently started to market such Pico-PV-Systems in Rwanda. The ToughStuff systems include a 1 Watt panel, a small lantern, a mobile phone charger, and a radio. Together with ISS, RWI has been assigned by the Dutch Ministry of Foreign Affairs to evaluate the impacts these systems have on households in rural areas. For this purpose, a Randomized Controlled Trial (RCT) is conducted in 15 remote communities in which households do not have access to electricity and rely on candles and kerosene for lighting and dry-cell batteries for radio usage. Mobile phones can only be charged in the next grid connected area or against charging fees in shops that have a generator or a car battery. After a baseline survey, for which 300 households are interviewed, 150 of them are selected randomly to receive a ToughStuff Pico-PV system for free. The baseline data is used to randomize within similar strata or pairs of households. The 'winners' also receive the same short training on how to use the Pico-PV system as ordinary ToughStuff customers who buy the solar system on the market. A follow-up survey will be conducted 6-12 months after the randomization of the Pico-PV systems. This research set-up allows for two principal research questions to be addressed: First, since the capacity of the Pico-PV system will in most cases not be sufficient to allow full usage of all three energy services - lighting, radio, mobile phone charging - we investigate how people living in absolute energy poverty decide between these three services. Second, the unbiased impact of using a Pico-PV system can be estimated due to the RCT approach. Indicators we examine are energy expenditures, lighting usage, mobile phone usage, and radio usage as well as the knowledge about contraceptive usage, family planning, and malaria prevention, which might be affected through radio information campaigns. In addition to the RCT, a small survey of around 100-150 households in regions in which ToughStuff is already promoting its products on the market is conducted in parallel to the follow-up survey. The purpose is to check the extent to which the usage and impact results in the RCT can be transferred to 'real-world' users.

Climate Impact Expert System (CIES)

Das Projekt "Climate Impact Expert System (CIES)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Today, plenty of data is available on the climate, agriculture or forestry which is neither integrated nor easily consumable by individuals or companies. However, climate data alone and integrated with other data sources is valuable information for economically relevant sectors such as agriculture, forestry, hydrology and (bio)energy production. The Potsdam Institute for Climate Impact Research (PIK), IT partner (wetteronline GmbH) and Bayer AG (specifically Bayer CropScience) are among the leading entities in their areas of expertise worldwide. The proposed work combines their expertise in the following fields: PIK: Climate research IT partner: Information systems Bayer: Plant protection The goal is in a first step to develop a consultant software product for agricultural problems (including hydrology and forestry) influenced by weather and climate. This product will achieve new levels of sophistication, with potential applications to various regions and areas of the economy (energy, water availability, forestry, health, stakeholder consultations etc.). Key innovations are as follows: - PIK is well stocked with different models for the computation of climate scenarios, hydrology and water resources, vegetation dynamics (including forestry and agriculture) which are to be coupled into a tool. There is no such model chain in the shape of an integrative tool so far. - The project aims at developing a client-server based system, which integrates climate and climate scenario from PIK, open data available in the internet, as well as knowledge about crops from our partner Bayer AG CropSciences. Access will be provided via a variety of web-enabled devices. - Although some institutions supply climate data and climate scenario data, the resulting effects on economically relevant sectors such as hydrology, agriculture or energy production are lacking. Within this pilot study, such scenarios integrating both climate and sectors will be provided for Germany to start with. - In turn, the scenario data compiled by the model system will be the foundation and data basis for a user tool that will enable future users to apply the data according to their specific demands in a very user-friendly format. - The aim is to deploy this information for as many regions and users as possible worldwide. Germany and selected regions from other climatic zones such as China and Africa will serve as pilot regions.

1 2 3 4 512 13 14