Das Projekt "Transformation von partikelförmigen Kraftfahrzeugemissionen und deren Vorläufern im Nahfeld der Quelle" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. Es soll die Verdünnung des Abgases von Kraftfahrzeugen im Straßenverkehr und besonders die dabei erfolgende Transformation der Aerosolpartikel unter atmosphärischen Bedingungen untersucht werden. Um dieses Ziel zu realisieren, wird ein Kofferanhänger mit den notwendigen Messgeräten ausgestattet und von den zu untersuchenden Fahrzeugen gezogen. Der Aerosoleinlass an diesem Anhänger wird variabel angebracht sein, um Messungen in verschiedenen Abständen vom Auspuffrohr zu ermöglichen. Ziel ist es, gemessene Unterschiede zwischen Immissions- und Emissionsmessungen zu quantifizieren und damit beobachtete Differenzen zwischen Messungen am Motorprüfstand und solchen an einem Standort an der Straße soweit wie möglich zu erklären. Weiterhin soll der Einfluss der äußeren Bedingungen, wie meteorologische Parameter (Temperatur, relative Feuchte, etc.) und der Geschwindigkeit des Fahrzeuges quantifiziert werden. Ein wichtiger Bestandteil ist dabei auch die Charakterisierung der Mischungs- und Verdünnungsprozesse zwischen Auspuff und Probennahme. Diese soll mit zeitlich hochaufgelösten Messungen von Temperatur, Geschwindigkeit und Feuchte der Luft realisiert werden. Zusätzlich zu diesen experimentellen Arbeiten soll, wenn sinnvoll, im weiteren Verlauf des Projektes die Transformation der Partikel mit einem Modell simuliert werden.
Das Projekt "Emission von Spurengasen bei Biomasseverbrennung" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Chemie (Otto-Hahn-Institut) durchgeführt. Offene Verbrennung von Pflanzenmaterial verschiedener Herkunft. Dabei Messung von Temperatur, Flussrate, Gewichtsverlust und Spurengaskonzentrationen im Abgas. Gemessene Spurengase: CO, CO2, CH4, C2-C10-Kohlenwasserstoffe, NO, N2O, NH3, HCN, CH3CN, SO2, H2S, CS2, COS.
Das Projekt "Optimierung der Abwaermenutzung in einer Aluminiumgiesserei" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Forschungsschwerpunkt Verfahrenstechnik und Energieanlagen, Arbeitsbereich Apparatebau durchgeführt. Beim Schmelzen von Aluminium werden grosse Rauchgasmengen erzeugt. Der Chargenbetrieb der Schmelzoefen hat Schwankungen der Rauchgastemperatur und des -volumenstroms zur Folge. In Zusammenarbeit mit der Hamburger Aluminiumwerk GmbH wurde fuer diese Rauchgase ein optimales Abwaermenutzungskonzept erarbeitet, das einen Dampfkreislauf bestehend aus Dampferzeuger, Turbogenerator und Kondensator vorsieht. Der Turbogenerator ist in der Lage, einen betraechtlichen Teil zur elektrischen Stromversorgung der Aluminiumelektrolyse beizutragen, was indirekt ueber eine Einsparung von Primaerenergie zu einer Reduzierung des CO2-Ausstosses fuehrt.
Das Projekt "Teilvorhaben: Entwicklung und Herstellung von Feedstock und Turboladern mittels Spritzguss" wird vom Umweltbundesamt gefördert und von Rauschert Heinersdorf - Pressig GmbH durchgeführt. Moderne Verbrennungsmotoren sind hochkomplexe Systeme für deren Effizienzsteigerung es einer ganzheitlichen Betrachtung bedarf. Durch Entwicklungen für die Bereiche Zylinderkopf / Brennraum, Abgasturbolader und Abgaskrümmer basierend auf optimierten Werkstoff- und Schichtsystemen sowie angepassten Werkstoff-Mix ist eine signifikante Effizienzsteigerung und Emissionsreduzierung nachzuweisen. Alternative synthetische Kraftstoffe ohne bzw. mit geringen Anteilen an Stickstoffverbindungen und aromatischen Kohlenwasserstoffen sind bei angestrebten höheren Verbrennungs- und Abgastemperaturen die Basis für reduzierte Emissionen und Aufwendungen zur Abgasreinigung. - Für strömungs- und gewichtsoptimierte direkte Anbindung des Abgaskrümmers aus Stahl an den Aluminium-Zylinderkopf erfolgt die Entwicklung einer Mischbau-Fügetechnologie. - Für hohe thermisch-korrosive Beanspruchungen im Zylinderkopf- und Kolbenboden erfolgt die Entwicklung keramischer Schutzschichten. - Keramische Si3N4-Leichtbau-Turboladerturbinenräder, angepasste Keramik-Metall-Fügetechnologie und reibungsoptimierte Laser-OF-Strukturierung (Lagerstellen der Wellen) sind ein dritter Baustein.
Das Projekt "Teilvorhaben: Entbindern und Sintern von keramischen Leichtbau-Turbinenrädern" wird vom Umweltbundesamt gefördert und von FCT Systeme GmbH durchgeführt. Moderne Verbrennungsmotoren sind hochkomplexe Systeme für deren Effizienzsteigerung es einer ganzheitlichen Betrachtung bedarf. Durch Entwicklungen für die Bereiche Zylinderkopf / Brennraum, Abgasturbolader und Abgaskrümmer basierend auf optimierten Werkstoff- und Schichtsystemen sowie angepassten Werkstoff-Mix ist eine signifikante Effizienzsteigerung und Emissionsreduzierung nachzuweisen. Alternative synthetische Kraftstoffe ohne bzw. mit geringen Anteilen an Stickstoff-verbindungen und aromatischen Kohlenwasserstoffen sind bei angestrebten höheren Verbrennungs- und Abgastemperaturen die Basis für reduzierte Emissionen und Aufwendungen zur Abgasreinigung. - Für strömungs- und gewichtsoptimierte direkte Anbindung des Abgaskrümmers aus Stahl an den Aluminium-Zylinderkopf erfolgt die Entwicklung einer Mischbau-Fügetechnologie. - Für hohe thermisch-korrosive Beanspruchungen im Zylinderkopf- und Kolbenboden erfolgt die Entwicklung keramischer Schutzschichten. - Keramische Si3N4-Leichtbau-Turboladerturbinenräder, angepasste Keramik-Metall-Fügetechnologie und reibungsoptimierte Laser-OF-Strukturierung (Lagerstellen der Wellen) sind ein dritter Baustein.
Das Projekt "Teilvorhaben: Fügen, Spritzschichten, Laserstrukturierung" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Werkstoff- und Strahltechnik durchgeführt. Moderne Verbrennungsmotoren sind hochkomplexe Systeme für deren Effizienzsteigerung es einer ganzheitlichen Betrachtung bedarf. Durch Entwicklungen für die Bereiche Zylinderkopf / Brennraum, Abgasturbolader und Abgaskrümmer basierend auf optimierten Werkstoff- und Schichtsystemen sowie angepassten Werkstoff-Mix ist eine signifikante Effizienzsteigerung und Emissionsreduzierung nachzuweisen. Alternative synthetische Kraftstoffe ohne bzw. mit geringen Anteilen an Stickstoffverbindungen und aromatischen Kohlenwasserstoffen sind bei angestrebten höheren Verbrennungs- und Abgastemperaturen die Basis für reduzierte Emissionen und Aufwendungen zur Abgasreinigung. - Für strömungs- und gewichtsoptimierte direkte Anbindung des Abgaskrümmers aus Stahl an den Aluminium-Zylinderkopf erfolgt die Entwicklung einer Mischbau-Fügetechnologie. - Für hohe thermisch-korrosive Beanspruchungen im Zylinderkopf- und Kolbenboden erfolgt die Entwicklung keramischer Schutzschichten. - Keramische Si3N4-Leichtbau-Turboladerturbinenräder, angepasste Keramik-Metall-Fügetechnologie und reibungsoptimierte Laser-OF-Strukturierung (Lagerstellen der Wellen) sind ein dritter Baustein.
Das Projekt "Teilvorhaben: Suspensionsspritzen, Spritzschichten für Fügetechnologien" wird vom Umweltbundesamt gefördert und von GTV Verschleißschutz GmbH durchgeführt. Moderne Verbrennungsmotoren sind hochkomplexe Systeme für deren Effizienzsteigerung es einer ganzheitlichen Betrachtung bedarf. Durch Entwicklungen für die Bereiche Zylinderkopf / Brennraum, Abgasturbolader und Abgaskrümmer basierend auf optimierten Werkstoff- und Schichtsystemen sowie angepassten Werkstoff-Mix ist eine signifikante Effizienzsteigerung und Emissionsreduzierung nachzuweisen. Alternative synthetische Kraftstoffe ohne bzw. mit geringen Anteilen an Stickstoffverbindungen und aromatischen Kohlenwasserstoffen sind bei angestrebten höheren Verbrennungs- und Abgastemperaturen die Basis für reduzierte Emissionen und Aufwendungen zur Abgasreinigung. - Für strömungs- und gewichtsoptimierte direkte Anbindung des Abgaskrümmers aus Stahl an den Aluminium-Zylinderkopf erfolgt die Entwicklung einer Mischbau-Fügetechnologie. - Für hohe thermisch-korrosive Beanspruchungen im Zylinderkopf- und Kolbenboden erfolgt die Entwicklung keramischer Schutzschichten. - Keramische Si3N4-Leichtbau-Turboladerturbinenräder, angepasste Keramik-Metall-Fügetechnologie und reibungsoptimierte Laser-OF-Strukturierung (Lagerstellen der Wellen) sind ein dritter Baustein.
Das Projekt "Teilvorhaben: keramisches Turbinenrad, Siliziumnitrid Si3N4, Verbindungstechnik metallische Welle / keramisches Turbinenrad" wird vom Umweltbundesamt gefördert und von BorgWarner Turbo Systems GmbH durchgeführt. Moderne Verbrennungsmotoren sind hochkomplexe Systeme für deren Effizienzsteigerung es einer ganzheitlichen Betrachtung bedarf. Durch Entwicklungen für die Bereiche Zylinderkopf / Brennraum, Abgasturbolader und Abgaskrümmer, basierend auf optimierten Werkstoff- und Schichtsystemen sowie angepassten Werkstoff-Mix ist eine signifikante Effizienzsteigerung und Emissionsreduzierung nachzuweisen. Alternative synthetische Kraftstoffe ohne bzw. mit geringen Anteilen an Stickstoffverbindungen und aromatischen Kohlenwasserstoffen sind bei angestrebten höheren Verbrennungs- und Abgastemperaturen die Basis für reduzierte Emissionen und Aufwendungen zur Abgasreinigung. Für strömungs- und gewichtsoptimierte direkte Anbindung des Abgaskrümmers aus Stahl an den Aluminium-Zylinderkopf erfolgt die Entwicklung einer Mischbau-Fügetechnologie. Für hohe thermisch-korrosive Beanspruchungen im Zylinderkopf- und Kolbenboden erfolgt die Entwicklung keramischer Schutzschichten. Keramische Si3N4-Leichtbau-Turboladerturbinenräder, angepasste Keramik-Metall-Fügetechnologie und reibungsoptimierte Laser-OF-Strukturierung (Lagerstellen der Wellen) sind ein dritter Baustein.
Das Projekt "Teilvorhaben: Definition der Gesamtsystemanforderung, Erstellung Lastenheft/Anforderungsliste; Betrieb, Messung, Validierung und Bewertung des Demonstrators" wird vom Umweltbundesamt gefördert und von Mercedes-Benz AG durchgeführt. Moderne Verbrennungsmotoren sind hochkomplexe Systeme für deren Effizienzsteigerung es einer ganzheitlichen Betrachtung bedarf. Durch Entwicklungen für die Bereiche Zylinderkopf / Brennraum, Abgasturbolader und Abgaskrümmer basierend auf optimierten Werkstoff- und Schichtsystemen sowie angepassten Werkstoff-Mix ist eine signifikante Effizienzsteigerung und Emissionsreduzierung nachzuweisen. Alternative synthetische Kraftstoffe ohne bzw. mit geringen Anteilen an Stickstoffverbindungen und aromatischen Kohlenwasserstoffen sind bei angestrebten höheren Verbrennungs- und Abgastemperaturen die Basis für reduzierte Emissionen und Aufwendungen zur Abgasreinigung. - Für strömungs- und gewichtsoptimierte direkte Anbindung des Abgaskrümmers aus Stahl an den Aluminium-Zylinderkopf erfolgt die Entwicklung einer Mischbau-Fügetechnologie. - Für hohe thermisch-korrosive Beanspruchungen im Zylinderkopf- und Kolbenboden erfolgt die Entwicklung keramischer Schutzschichten. - Keramische Si3N4-Leichtbau-Turboladerturbinenräder, angepasste Keramik-Metall-Fügetechnologie und reibungsoptimierte Laser-OF-Strukturierung (Lagerstellen der Wellen) sind ein dritter Baustein.
Das Projekt "Teilvorhaben: Auslegung Spannkonzepte für Fügen; Vorbehandlung Brennraum durch Laserreinigen; Ausarbeitung Montagekonzepte" wird vom Umweltbundesamt gefördert und von SITEC Industrietechnologie GmbH durchgeführt. Moderne Verbrennungsmotoren sind hochkomplexe Systeme für deren Effizienzsteigerung es einer ganzheitlichen Betrachtung bedarf. Durch Entwicklungen für die Bereiche Zylinderkopf / Brennraum, Abgasturbolader und Abgaskrümmer basierend auf optimalen Werkstoff- und Schichtsystemen sowie angepassten Werkstoff-Mix ist eine signifikante Effizienzsteigerung und Emissionsreduzierung nachzuweisen. Alternative synthetische Kraftstoffe ohne bzw. mit geringen Anteilen an Stickstoffverbindungen und aromatischen Kohlenwasserstoffen sind bei angestrebten höheren Verbrennungs- und Abgastemperaturen die Basis für reduzierte Emissionen und Aufwendungen zur Abgasreinigung. Für strömungs- und gewichtsoptimierte direkte Anbindung des Abgaskrümmers aus Stahl- an den Aluminium-Zylinderkopf erfolgt im Vorhaben die Entwicklung einer Mischbau-Fügetechnologie. Für hohe thermisch-korrosive Beanspruchungen im Zylinderkopf und Kolbenboden erfolgt die Entwicklung und Bearbeitung keramischer Schutzschichten. Keramische Si3N4-Leichtbau-Turboladerturbinenräder, angepasste Keramik-Metall-Fügetechnologien und reibungsoptimierte Laser-OF-Strukturierung (Lagerstellen der Wellen) sind ein dritter Baustein.
Origin | Count |
---|---|
Bund | 183 |
Type | Count |
---|---|
Förderprogramm | 183 |
License | Count |
---|---|
offen | 183 |
Language | Count |
---|---|
Deutsch | 176 |
Englisch | 12 |
Resource type | Count |
---|---|
Keine | 151 |
Webseite | 32 |
Topic | Count |
---|---|
Boden | 164 |
Lebewesen & Lebensräume | 161 |
Luft | 172 |
Mensch & Umwelt | 183 |
Wasser | 157 |
Weitere | 183 |