API src

Found 184 results.

Emission von Spurengasen bei Biomasseverbrennung

Offene Verbrennung von Pflanzenmaterial verschiedener Herkunft. Dabei Messung von Temperatur, Flussrate, Gewichtsverlust und Spurengaskonzentrationen im Abgas. Gemessene Spurengase: CO, CO2, CH4, C2-C10-Kohlenwasserstoffe, NO, N2O, NH3, HCN, CH3CN, SO2, H2S, CS2, COS.

Transformation von partikelförmigen Kraftfahrzeugemissionen und deren Vorläufern im Nahfeld der Quelle

Es soll die Verdünnung des Abgases von Kraftfahrzeugen im Straßenverkehr und besonders die dabei erfolgende Transformation der Aerosolpartikel unter atmosphärischen Bedingungen untersucht werden. Um dieses Ziel zu realisieren, wird ein Kofferanhänger mit den notwendigen Messgeräten ausgestattet und von den zu untersuchenden Fahrzeugen gezogen. Der Aerosoleinlass an diesem Anhänger wird variabel angebracht sein, um Messungen in verschiedenen Abständen vom Auspuffrohr zu ermöglichen. Ziel ist es, gemessene Unterschiede zwischen Immissions- und Emissionsmessungen zu quantifizieren und damit beobachtete Differenzen zwischen Messungen am Motorprüfstand und solchen an einem Standort an der Straße soweit wie möglich zu erklären. Weiterhin soll der Einfluss der äußeren Bedingungen, wie meteorologische Parameter (Temperatur, relative Feuchte, etc.) und der Geschwindigkeit des Fahrzeuges quantifiziert werden. Ein wichtiger Bestandteil ist dabei auch die Charakterisierung der Mischungs- und Verdünnungsprozesse zwischen Auspuff und Probennahme. Diese soll mit zeitlich hochaufgelösten Messungen von Temperatur, Geschwindigkeit und Feuchte der Luft realisiert werden. Zusätzlich zu diesen experimentellen Arbeiten soll, wenn sinnvoll, im weiteren Verlauf des Projektes die Transformation der Partikel mit einem Modell simuliert werden.

Optimierung der Abwaermenutzung in einer Aluminiumgiesserei

Beim Schmelzen von Aluminium werden grosse Rauchgasmengen erzeugt. Der Chargenbetrieb der Schmelzoefen hat Schwankungen der Rauchgastemperatur und des -volumenstroms zur Folge. In Zusammenarbeit mit der Hamburger Aluminiumwerk GmbH wurde fuer diese Rauchgase ein optimales Abwaermenutzungskonzept erarbeitet, das einen Dampfkreislauf bestehend aus Dampferzeuger, Turbogenerator und Kondensator vorsieht. Der Turbogenerator ist in der Lage, einen betraechtlichen Teil zur elektrischen Stromversorgung der Aluminiumelektrolyse beizutragen, was indirekt ueber eine Einsparung von Primaerenergie zu einer Reduzierung des CO2-Ausstosses fuehrt.

Effiziente und kraftstoff-FLEXible Verbrennungsmotoren basierend auf innovativen Werkstoff-, Schichtsystemen und Hybridbauweisen, Teilvorhaben: Suspensionsspritzen, Spritzschichten für Fügetechnologien

Effiziente und kraftstoff-FLEXible Verbrennungsmotoren basierend auf innovativen Werkstoff-, Schichtsystemen und Hybridbauweisen, Teilvorhaben: Fügen, Spritzschichten, Laserstrukturierung

Effiziente und kraftstoff-FLEXible Verbrennungsmotoren basierend auf innovativen Werkstoff-, Schichtsystemen und Hybridbauweisen, Teilvorhaben: Entbindern und Sintern von keramischen Leichtbau-Turbinenrädern

Effiziente und kraftstoff-FLEXible Verbrennungsmotoren basierend auf innovativen Werkstoff-, Schichtsystemen und Hybridbauweisen, Teilvorhaben: Entwicklung und Herstellung von Feedstock und Turboladern mittels Spritzguss

Effiziente und kraftstoff-FLEXible Verbrennungsmotoren basierend auf innovativen Werkstoff-, Schichtsystemen und Hybridbauweisen, Teilvorhaben: Definition der Gesamtsystemanforderung, Erstellung Lastenheft/Anforderungsliste; Betrieb, Messung, Validierung und Bewertung des Demonstrators

Effiziente und kraftstoff-FLEXible Verbrennungsmotoren basierend auf innovativen Werkstoff-, Schichtsystemen und Hybridbauweisen, Teilvorhaben: Auslegung Spannkonzepte für Fügen; Vorbehandlung Brennraum durch Laserreinigen; Ausarbeitung Montagekonzepte

ENG-ENALT 2C, Cullet preheating

Objective: To achieve considerable energy savings through use of preheated cullet in the glass melt. The waste gases, which up until now have been lost to the atmosphere, are taken as heating medium from the waste gas channel of the melting end. The procedure requires a considerably lower use of combustibles. For a 200 t/day production rate, an energy saving of 67 TOE/year is expected at project level (12 per cent of the total energy consumption). Payback time is estimated at 4 years. General Information: Principally glass is melted out of a composition of different raw materials, e.g. silica sand, lime, soda and glass cullet. Oil, gas or electrical energy can be used as heating media. The individual raw materials are mixed in the processing installation and are fed to a storage silo situated in front of the melting process by means of batch chargers. The initial temperature of the batch is 20 deg. C, whereas the melting temperature ranges between 1400-1500 deg. C. The waste gases are primarily fed again into the melting process by means of heat exchangers (regenerators) or recuperator, thus reducing the waste gas temperature to approx. 500 deg. C by preheating the combustion air. The novelty of this project consists in preheating the glass cullet prior to the mixing with other raw materials, by covering the waste gases energy at a level of approx. 500 deg. C. The glass cullet is firstly led to a preheating aggregate. The humidity of the cullet can be reduced by this preheating, which results in improved conditions for the melting process. The main characteristic of this system is the direct contact between cullet and waste gases. Up until now the gases from the melting durnace have been cooled down to approx. 400-500 deg. C in recuperators or regenerator heat exchangers, and then released into the atmosphere, in most cases without any further waste gas treatment. With the new system the residual heat content of the waste gas is used to pre-heat the cullet. If the system is correctly designed, then not only is the cullet heated, but the dust content of the waste gas is reduced by approximately 30-40 per cent. The cullet is contained by louvred segments. The openings for the waste gases are designed so that the gas velocities are very low, which helps to reduce the dust emission. The waste gases, which must have a maximum temperature of no more than 550 deg. C, move in cross counter flow up through the cullet. In this way a large amount of the heat content of the waste gases is transferred to the cullet as it flows slowly from the top to the bottom. The cullet stream moves continuously, so the contact area is continuously renewed, which guarantees a very good heat exchange. The cullet is heated to a maximum of 450 deg. C, whilst the waste gas leaves the system with a temperature of 250-300 deg. C. In addition to the energy savings, the project will also achieve improved glass qualitites, and reduced reject rates due to the better furnace...

1 2 3 4 517 18 19