API src

Found 576 results.

Related terms

Luftqualität 2019: NO2-Rückgang setzt sich fort

Noch etliche Städte über dem NO2-Grenzwert – erstmals keine Überschreitung bei Feinstaub, hohe Ozon-Spitzen 2019 wurde der Jahresmittelgrenzwert für Stickstoffdioxid (NO2) von 40 µg/m³ Luft an rund 20 Prozent der verkehrsnahen Messstationen überschritten. 2018 waren es noch 42 Prozent. Insgesamt ist die Belastung mit Stickstoffdioxid deutschlandweit weiter rückläufig. Das zeigt die vorläufige Auswertung der Messdaten der Länder und des Umweltbundesamtes (UBA). Hierbei sind überwiegend nur die etwa 400 automatisch messenden Stationen berücksichtigt. Die Daten von ca. 130 der 140 in Laboren analysierten Passivsammlern liegen erst im Mai 2020 vor. Beim Feinstaub gab es 2019 erstmals keine Überschreitungen des derzeit geltenden Grenzwertes. Dirk Messner, Präsident des Umweltbundesamtes (⁠ UBA ⁠): „Dass die Luft besser wird, ist erfreulich, und zeigt, dass Umweltpolitik wirkt. Bund, Länder und Kommunen, die viel für bessere Luft investiert haben, können den Erfolg nun an den niedrigeren Messwerten ablesen. Der bereits 1999 beschlossene NO2-Grenzwert zum Schutz der menschlichen Gesundheit muss seit 10 Jahren eingehalten werden. Trotz der Erfolge liegen immer noch etliche deutsche Städte über dem Grenzwert. Aktuell sind es 19, wenn alle Daten ausgewertet sind, könnte die Zahl noch auf 25 bis 30 Städte steigen.“ Hauptquelle der Stickstoffoxide in Städten ist der Straßenverkehr und hier vor allem Diesel-Pkw. Dirk Messner: „Heute haben moderne Diesel-Autos der Abgasnorm Euro 6d-TEMP auch auf der Straße niedrige Stickstoffoxid-Emissionen, was zur Abnahme der NO2-Belastung beiträgt. Dies zeigt, dass wir schon längst die Grenzwerte in den Städten hätten einhalten können, wenn bereits ältere Diesel-Pkw sauber gewesen wären, und zwar nicht nur auf dem Prüfstand, sondern real auf der Straße. Und eins bleibt klar: Der beste Garant für saubere Luft in den Städten sind weniger Autos auf den Straßen.“ Der Rückgang der mittleren NO2-Konzentrationen an verkehrsnahen Messstationen um etwa drei Mikrogramm pro Kubikmeter lässt sich auf mehrere Faktoren zurückführen: Lokale Maßnahmen wie zum Beispiel Tempolimits, Fahrverbote oder der Einsatz schadstoffärmerer Busse, nationale Maßnahmen wie Softwareupdates sowie die jährlich stattfindende Erneuerung der Fahrzeugflotte und meteorologische Einflüsse, die die Ausbreitung von Luftschadstoffen beeinflussen. Modellierungen zeigen, dass Softwareupdates und Flottenerneuerung 2019 eine Minderung von ein bis zwei Mikrogramm NO2 pro Kubikmeter bewirkten. Davon sind rund drei Viertel auf neue, sauberere Fahrzeuge zurückzuführen und nur etwa ein Viertel auf die Wirkung der Softwareupdates. Im Sinne des Gesundheitsschutzes müssen die NOx-Emissionen während des gesamten Fahrzeuglebens niedrig bleiben. Bei der Weiterentwicklung der europäischen Abgasnormen (Post-Euro-6/VI-Gesetzgebung) sollten daher die Anforderungen an die Dauerhaltbarkeit der Abgasreinigungssysteme erhöht werden. Zudem sollte in der regelmäßig durchzuführenden Abgasuntersuchung (AU) die Messung der NOx-Emissionen aufgenommen werden, um die Wirksamkeit der Stickstoffoxid-Katalysatoren überprüfen und mögliche Defekte frühzeitig erkennen zu können. Feinstaub (⁠ PM10 ⁠): 2019 war das am geringsten mit Feinstaub belastete Jahr seit Beginn der Feinstaubmessungen Ende der 1990er Jahre. Die Feinstaubgrenzwerte (höchstens 35 Tage pro Jahr über 50 µg/m³ Luft im Tagesmittel und maximal 40 µg/m³ Luft im Jahresmittel) wurden erstmals deutschlandweit eingehalten. Dirk Messner: „Was zunächst wie ein Erfolg klingt, ist im Sinne des Gesundheitsschutzes leider noch nicht ausreichend. Feinstaub ist ein deutlich größeres Gesundheitsproblem als Stickstoffoxide – global und auch in Deutschland. Die Grenzwerte für Feinstaub sind mittlerweile mehr als 20 Jahre alt und bedürfen dringend einer Anpassung an die neuesten wissenschaftlichen Erkenntnisse der Weltgesundheitsorganisation (⁠ WHO ⁠). Solange die von der WHO empfohlenen, deutlich niedrigeren Werte nicht eingehalten werden, ist der Schutz der menschlichen Gesundheit vor Feinstaub noch nicht ausreichend. Auch die EU-Kommission hat im europäischen Green Deal festgestellt, dass eine Überarbeitung der Grenzwerte notwendig ist. Dies empfehlen wir auch: Um die Gesundheit der Menschen zu schützen sollten die Feinstaub-Grenzwerte strenger werden.“ Auf der Grundlage wissenschaftlicher Studien empfiehlt die WHO, dass die PM10-Konzentrationen den Wert von 20 µg/m3 im Jahresmittel nicht überschreiten sollen. Hintergrund ist die erhebliche gesundheitliche Gefahr, die von Feinstaub ausgeht. Laut der Studie zur weltweiten Krankheitslast (oder: Global Burden of Disease Studie) des Institute for Health Metrics and Evaluation (IHME) sind statistisch gesehen weltweit im Jahr 2017 etwa 2,9 Millionen Todesfälle auf die Feinstaubbelastung (⁠ PM2,5 ⁠) zurückzuführen. Im Vergleich dazu sind es für Rauchen und Alkohol, als die klassischen Risiken, etwa 7 beziehungsweise 2,8 Millionen Todesfälle. Feinstaub gehört weltweit, in Europa und in Deutschland zu den 10 Risikofaktoren mit der höchsten Krankheitslast. Für Europa geht das IHME von etwa 415.000 attributablen Todesfällen aus. Eigene Berechnungen des UBA zeigen im jährlichen Durchschnitt für Deutschland etwa 44.900 attributable Todesfälle. 2019 wurde an 13 Prozent aller Messstationen der WHO Richtwert im Jahresmittel nicht eingehalten. Die Empfehlung der WHO in Bezug auf die Tagesmittelwerte (höchstens drei Tage pro Jahr über 50 µg/m³ im Tagesmittel) hielten rund ein Drittel (36%) aller Messstationen in Deutschland nicht ein. Dirk Messner: „Während der Ausstoß von Feinstaub aus Verbrennungsmotoren schon länger zurück geht, sollten besonders die Emissionen aus der Landwirtschaft und aus Holzfeuerungen reduziert werden.“ Ozon: Im Vergleich zu den letzten 20 Jahren war 2019 ein durchschnittlich mit Ozon belastetes Jahr. Die außergewöhnlich hohen Temperaturen von 40° Celsius und mehr in den Tagen Ende Juli 2019 führten jedoch zu zahlreichen Überschreitungen der Informations- und Alarmschwelle (180 bzw. 240 µg/m³ Luft) und einem Maximalwert über 300 µg/m³ Luft. Zudem wurde das Langfristziel zum Schutz der Gesundheit (maximal 120 µg/m³ Luft im Mittel über 8 Stunden) wie bereits im Vorjahr an allen 260 Stationen überschritten, und zwar an durchschnittlich 24 Tagen pro Station. Die Empfehlung der WHO, 100  µg/m3 Luft im 8-Stundenmittel nicht zu überschreiten, wurde, wie auch in der Vergangenheit, weit verfehlt. Ozon wird bei intensiver Sonneneinstrahlung durch komplexe Reaktionen aus Vorläuferschadstoffen − überwiegend Stickstoffoxiden und flüchtigen organischen Verbindungen − gebildet. Stickstoffoxide stammen zum großen Teil aus dem Verkehrsbereich, flüchtige organische Stoffe aus der Verwendung von Lösemitteln, wie Farben und Lacke, Klebstoffe, Reinigungsmitteln. Aber auch viele Pflanzenarten geben flüchtige organische Verbindungen (biogene ⁠ VOC ⁠ bzw. BVOC) ab und liefern daher, neben den vom Menschen verursachten Emissionen, selbst Vorläuferstoffe für die Ozonbildung. Das Ausmaß des Einflusses der BVOC auf die Ozonbildung wird neben anderen Faktoren – wie z.B. Vegetationscharakteristik, Schädlingsbefall – maßgeblich von der Lufttemperatur und der Wasserversorgung der Pflanzen beeinflusst. Hohe Temperaturen über 30° Celsius führen bei ausreichender Wasserversorgung zu einem starken Anstieg der BVOC-Emissionen, die zur verstärkten Ozonbildung beitragen. Dirk Messner: „Hitzeperioden werden im Zuge des Klimawandels künftig häufiger auftreten, was hohe Ozonspitzen nach sich ziehen könnte. Um gesundheitliche Risiken durch Ozon zu verringern müssen wir die Emissionen der von Menschen verursachten Ozonvorläuferstoffe deutlich mindern.“

GEMAS – Geochemische Kartierung der Acker- und Grünlandböden Europas, Einzelelementkarten, Au - Gold

GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.

Weiterentwicklung der Abgasuntersuchung (AU)

Das Umweltbundesamt hat in diesem Forschungsprojekt nachgewiesen, dass dynamische NOx-Messverfahren für Diesel-Pkw in der Praxis bei den Kfz-Prüfstellen im Rahmen der Abgasuntersuchung (AU) angewendet werden können. Schwerpunkte waren hierbei die Fahrzeugkonditionierung, die Validierung der dynamischen Messverfahren an 33 Fahrzeugen (M1/N1) und ein daraus abgeleiteter Revisionsvorschlag für die Richtlinie 2014/45/EU über die regelmäßige technische Überwachung von Kraftfahrzeugen. In einem nächsten Schritt sollten auf Basis dieser Empfehlungen ein konkreter Zeitplan für die Umsetzung erarbeitet werden. Veröffentlicht in Texte | 108/2024.

Fortentwicklung der Abgasuntersuchung

Das Umweltbundesamt hat in einem Forschungsprojekt untersuchen lassen, welche Messverfahren für Diesel-Pkw geeignet sind, um defekte Bauteile und Systeme zur Minderung von Stickstoffoxid-Emissionen (NOx) im Rahmen der regelmäßig durchzuführenden Abgasuntersuchung (AU) zu erkennen. Zentrales Ergebnis ist, dass die Ergänzung der AU um den Luftschadstoff NOx für Diesel-Pkw und leichte Nutzfahrzeuge mit Dieselmotor mit den betrachteten Prüf- und Testmethoden messtechnisch leistbar und gesamtwirtschaftlich sinnvoll ist. In einem nächsten Schritt sollten auf Basis dieser Empfehlungen ein konkreter Zeitplan für die Umsetzung erarbeitet und die dafür notwendigen Meilensteine festgelegt werden. Veröffentlicht in Texte | 22/2020.

Greenpeace-Aktivisten fordern von VW Tranzparenz bei Abgastests

Mitglieder der Umweltschutzorganisation Greenpeace sind am 9. November 2015 auf das Dach des Haupteingangs des VW-Werkes in Wolfsburg geklettert. Sie wandelten das Logo des Autoherstellers um in einen CO2-Schriftzug. Daneben entrollten sie ein Plakat mit der Aufschrift: “Das Problem” – eine Anspielung auf den VW-Werbeslogan “Das Auto.” Greenpeace verlangt mehr Transparenz und ehrliche Angaben zu Abgaswerten.

EU-Umweltausschuss lehnt neue Abgastests ab

Das Europäische Parlament teilte am 14. Dezember 2015 mit, dass der Umweltausschuss die Vorlage des Technischen Ausschusses für Motorfahrzeuge zu EU-weiten Abgastests von Dieselautos mit großer Mehrheit abgelehnt hat. Die Abgeordneten begründeten die Ablehnung damit, dass die Vorlage bestehenden Emissions-Grenzen widerspreche und somit gegen geltende EU-Gesetze verstoße.

Fortentwicklung der Abgasuntersuchung

Die periodische Abgasuntersuchung (AU) leistet einen wichtigen Beitrag zur Verbesserung der Luftqualität. Durch die AU können hoch emittierende Fahrzeuge detektiert und eine Reparatur bzw. Stilllegung angeordnet werden. Aufgrund neuartiger Abgasreinigungssysteme muss die AU allerdings an den aktuellen Stand der Technik angepasst werden, um ihre Qualität und Aussagekraft zu optimieren. In diesem Bericht wird untersucht, welche Messverfahren geeignet sind, um defekte und/oder manipulierte stickstoffoxidemissionsmindernde Bauteile und Systeme im Rahmen einer AU an Dieselfahrzeugen erkennen zu können. Stickstoffoxide (NOx) entstehen im Dieselmotor insbesondere unter Last. Daher können NOx-mindernde Systeme am aussagekräftigsten unter Aufbringung einer externen Last überprüft werden. Es werden die beiden Messmethoden Rollenprüfstand und Straßenfahrt näher untersucht. Für eine transparente und reproduzierbare NOx-Messung ist die Einhaltung von Umgebungsparametern wie z.B. einer definierten Temperatur der Abgasnachbehandlungssysteme elementar. Eine sichere Aussage über die Funktion dieser Systeme ist nur möglich, wenn diese bei der Prüfung in Ihrem Arbeitsbereich betrieben werden. Um diese Parameter zu überprüfen ist ein Zugang zu erweiterten OBD-Informationen erforderlich. Es wird eine Nutzen-Kosten-Analyse (NKA) zur ökonomischen Bewertung einer AU mit neuem Messverfahren durchgeführt. Auch wenn verschiedene Parameter aufgrund noch nicht vorhandener Daten abgeschätzt werden mussten, spricht das Ergebnis der NKA ökonomisch für die Einführung eines neuen Messverfahrens im Rahmen der AU. Quelle: Forschungsbericht

Further development of exhaust emissions testing

Fortentwicklung der Abgasuntersuchung

Das Umweltbundesamt hat in einem Forschungsprojekt untersuchen lassen, welche Messverfahren für Diesel-Pkw geeignet sind, um defekte Bauteile und Systeme zur Minderung von Stickstoffoxid-Emissionen (NOx) im Rahmen der regelmäßig durchzuführenden Abgasuntersuchung (AU) zu erkennen. Zentrales Ergebnis ist, dass die Ergänzung der AU um den Luftschadstoff NOx für Diesel-Pkw und leichte Nutzfahrzeuge mit Dieselmotor mit den betrachteten Prüf- und Testmethoden messtechnisch leistbar und gesamtwirtschaftlich sinnvoll ist. In einem nächsten Schritt sollten auf Basis dieser Empfehlungen ein konkreter Zeitplan für die Umsetzung erarbeitet und die dafür notwendigen Meilensteine festgelegt werden.

Diesel R33

Das Projekt "Diesel R33" wird vom Umweltbundesamt gefördert und von Hochschule für angewandte Wissenschaften Fachhochschule Coburg, Technologietransferzentrum Automotive (TAC) durchgeführt. Im Dieselkraftstoffmarkt ist vor allem Biodiesel seit der Jahrtausendwende etabliert. Der Einsatz von Biodiesel ist jedoch durch die Kraftstoffnorm DIN EN 590 auf 7 % begrenzt. Als neuer biogener Kraftstoff wurde hydriertes Pflanzenöl (HVO) im Projekt Diesel regenerativ als Blend mit 2 % bzw. 7 % Biodiesel erfolgreich getestet. Neben emissionsseitigen Vorteilen von HVO besitzt dieser Kraftstoff jedoch den Nachteil, dass er nicht konform zur Dieselkraftstoffnorm (DIN EN 590) ist, da die Dichte von HVO mit 780 kg/m3 bei 15 °C unter dem vorgeschriebenen Minimalwert von 820 kg/m3 liegt. Somit ist der Vertrieb von HVO als Reinkraftstoff nicht möglich. Um diesen Nachteil zu umgehen und trotzdem die Vorteile des biogenen Kraftstoffs nutzen zu können, wurde die Kraftstoffformulierung Diesel R33 definiert. Mit der Formulierung eines 33 %-igen biogenen Kraftstoffes können die DIN EN 590 sowie die 10. BImSchV eingehalten werden. Dabei setzt sich die Kraftstoffformulierung aus 7 % Altspeiseölmethylester und 26 % HVO sowie einem qualitativ hochwertigen Dieselkraftstoff zusammen. Für den herkömmlichen Biodieselanteil von sieben Prozent wird ausschließlich gebrauchtes Rapsöl, das in der Region gesammelt wurde, verwendet. Zur Herstellung des HVO-Anteils wurde neben Rapsöl auch Palmöl verwendet. Dieser neue Kraftstoff Diesel R33 wurde unter Realbedingungen in einem Großflottenversuch getestet. Die Flotte bestand aus rund 280 Fahrzeugen (Nutzfahrzeuge, Pkw, Busse und mobile Arbeitsmaschinen), die unterschiedliche Abgasklassen (Euro 0 bis Euro 6) besaßen. Insgesamt wurden in der Projektlaufzeit 1.899.508 Liter des Kraftstoffs verbraucht. In einem weiteren Schritt werden zwei Fahrzeuge mit einem HVO-Anteil betrieben, der rein aus Algenöl bzw. aus der Hefefermeation hergestellt wurde. Neben dem Aspekt der Kompatibilität war ein weiterer wesentlicher Aspekt im Projekt Diesel R33 und für dessen Einführung die Luftqualitätsverbesserung. Ein zusätzliches wissenschaftliches Ziel war die Verlängerung des Motorölwechselintervalls.

1 2 3 4 556 57 58