API src

Found 2425 results.

Related terms

Bewertung wassergefährdender Stoffe - Datenbank RIGOLETTO

In der Datenbank Rigoletto werden Chemikalien nach ihrem Gefährdungspotential für die aquatische Umwelt und die Gesundheit des Menschen in drei Wassergefährdungsklassen (WGK 1 bis 3) sowie in die Gruppe der nicht wassergefährdenden (nwg) Stoffe eingestuft, Hintergrundinformationen zu den einzelnen Stoffen angeboten und CAS- und EG-Nummern (CAS = Chemical Abstract Services, EG = Europäische Gemeinschaft z. B. EINECS-Nr. = European Inventory of Existing Chemicals) aufgeführt. Die Bewertung der Chemikalien erfolgt durch Selbsteinstufung durch die Hersteller und Inverkehrbringer entsprechend den Maßgaben der Verwaltungsvorschrift wassergefährdender Stoffe (VwVwS) vom 17. 05. 1999 und in Einzelfällen durch die "Kommission Bewertung wassergefährdender Stoffe (KBwS)". Im wasserrechtlichen Vollzug der Bundesländer dienen die Wassergefährdungsklassen dazu, Anforderungen an die technische und logistische Sicherheit bei Industrieanlagen und Lagern festzulegen. Die Daten können mit Hilfe einer komfortablen Suchmaschine über Teile der Stoffbezeichnung, CAS-/ EG-Nummern, oder Synonyme recherchiert werden. Folgende Aufgaben werden mit Hilfe der Datenbank Rigoletto gelöst: · Verwalten der nach Anhang 3 der VwVwS vom 17. 05. 1999 durch Hersteller und Inverkehrbringer dokumentierten Stoffe, · Erstellung von umfassenden Stoffdatensätzen, die einstufungsrelevante Daten zur Identifikation, Toxizität, Ökotoxizität, Verhalten in der Umwelt und zu Klassifizierungen umfassen, · Dokumentation der Stoffinformationen und Ausgabe der Datensätze in Form eines Datenblattes, das als Layout-Vorlage zur Vervielfältigung verwendbar ist, · Verwaltung und Dokumentation der Literaturquellen, · regelmäßige Weitergabe der Daten für die Veröffentlichung der Einstufungen im Internet, · Erstellung des Katalogs wassergefährdender Stoffe sowie der VwVwS in Form layoutfähiger Vorlagen.

Contaminants in water resources: Prioritization and recommendations for conducting a “cold” biodegradation simulation test according to OECD TG 309

The threat posed to drinking water resources by persistent and mobile substances has been recognized for decades. However, for many contaminants, some of which have been detected in drinking water resources for decades, there is still no conclusive assessment of their intrinsic biodegradability in the aquatic environment by the responsible companies. The recommendations are intended to make it easier for a wide range of users, such as water utility laboratories and government agencies with established analytical facilities, to perform a "cold" degradation test in accordance with ⁠ OECD ⁠ TG 309 for substances found in their own water resources. Veröffentlicht in Texte | 175/2024.

Haushaltsgeräteservice

Die industrielle Nutzung des Grundstücks ist seit 1911 als Betriebsfläche zur Herstellung von nummerierten Spezial-Kontrolldruckerzeugnissen (Paragon Kassenblock AG) und Lager für Beleuchtungsköpern (R. Frister AG) dokumentiert. Von 1940 bis 1945 erfolgte die Produktion von Farben durch die Lackfabrik Dr. Werner. Von 1945 bis 1995 diente der Standort der Endmontage und Reparatur von Haushaltsgeräten (VEB Haushaltsgeräteservice später Haushaltsgeräte-Service GmbH). Danach (bis etwa 2006) wurden die Flächen an Unternehmen des Klein- und Mittelgewerbes vermietet. Aus der Nutzung des Grundstücks zur Herstellung und Verarbeitung von Lackfarben wurde ein unterirdisches Tanklager mit ca. 20 Einzelbehältern betrieben. Zur Herstellung der Produkte wurden auf der Fläche die aromatischen Kohlenwasserstoffe Benzol, Toluol und Xylol, Naphthalin, Petroleum, Schwerbenzin, Vergaserkraftstoffe, Terpentinöl sowie diverse alkoholische Verbindungen eingesetzt, gelagert und umgeschlagen. In Vorbereitung einer Erweiterung des Gebäudebestandes an der Freifläche zur Fuststraße erfolgte 1980 die Bergung des Tanklagers, wodurch es zu nachweisbaren Schadstoffaustritten kam. Es ist davon auszugehen, dass es auch durch den unsachgemäßen Umgang mit den für die Lackfarbenproduktion verwendeten Gefahrstoffen zu Schadstoffeinträgen in den Untergrund kam. Als Folge der Schadstoffeinträge in den Boden wurden durch die nachstehend beschriebenen Erkundungen massive Kontaminationen des Bodens durch BTEX (untergeordnet PAK und MKW) nachgewiesen. Die höchsten Belastungen wurden mit über 5.000 mg/kg BTEX bei 6 – 9 m unter Geländeoberkante (uGOK) unterhalb des ehem. Druckereigebäudes angetroffen. Die besondere Gefährdungssituation ergibt sich aus der Lage des Standortes innerhalb der Trinkwasserschutzzone II des Wasserwerks Wuhlheide . In einer frühen Phase der Altlastensanierung konzentrierten sich die In einer frühen Phase der Altlastensanierung konzentrierten sich die Erkundungen auf die Eingrenzung der Schadensherde für die Planung und Umsetzung von hydraulischen Sicherungsmaßnahmen zur Verhinderung der Verlagerung der Kontamination zu den Fassungen des Wasserwerks Wuhlheide (Abstromsicherung). Mit fortschreitender Bearbeitungsdauer zielten die Arbeiten zunehmend auf die Vorbereitungen zur Sanierung der Belastungen in den Eintragsbereichen/ Schadensherden. Zur Bewertung und Beobachtung der Grundwasserbeschaffenheit sowie der Steuerung der hydraulischen Sicherungs-/ Sanierungsmaßnahmen wurde zwischen 1995 und 2004 ein Netz von Messpegeln geschaffen, welches regelmäßig auf die standortspezifischen Parameter hin analysiert wurde. In 2005/2006 wurde das Messnetz auf der Basis der Ergebnisse einer teufenorientierten Beprobung des Grundwassers erweitert. Im Zuge der Baufeldfreimachung zur Bodensanierung ist baubedingt eine Reduzierung des Bestandes erfolgt. Derzeit liegt der Fokus des Grundwassermonitorings als Nachsorgemaßnahme auf der Überwachung der Grundwasserqualität an der Grundstücksgrenze im unmittelbaren Zustrom zu den Förderbrunnen des Wasserwerks Wuhlheide. Seit 1995 wurde zum Schutz der nahe gelegenen Förderbrunnen des Wasserwerks eine hydraulische Sicherungs-/ Sanierungsmaßnahme durchgeführt. Die Technologie der Reinigung des geförderten Grundwassers wurde im Zeitraum von 2002 bis 2006 entsprechend dem Stand der Technik, der Schadstoffzusammensetzung sowie anderen speziellen Problematiken mehrfach angepasst. Zur Optimierung des Schadstoffaustrags wurde die Brunnenanzahl erhöht und ein hydraulischer Kreislauf für eine bessere Durchspülung des Aquifers erzeugt. Im Ergebnis der durchgeführten Sanierungsuntersuchungen zeigte sich, dass allein durch hydraulische Maßnahmen keine ausreichende Schadstoffreduzierung erzielt werden konnte. Daher wurde die Beseitigung der Schadstoffquellen mittels Bodenaustausch festgelegt, die 2007/2008 begonnen und 2011 abgeschlossen wurde. Einen chronologischen Abriss der einzelnen Sanierungsetappen zeigt die folgende Abbildung. 1995 – 2002: Sicherungs-/Sanierungsmaßnahme durch Förderung aus 2 Sicherungsbrunnen an derabstromigen Grundstücksgrenze und später zusätzlich aus 2 Sanierungsbrunnen in den damals bekannten Hauptschadensbereichen. 06/2002 – 12/2006: Umstellung der Reinigungstechnologie auf einen biologischen Wirbelschichtreaktor als Hauptreinigungsstufe, in dem Aktivkohle als Trägermaterial für Biomasse umlaufartig oszilliert, mit Erhöhung der Förderrate. Abschließende Adsorption mittels Wasseraktivkohle. 01/2007 – 08/2008: Außerbetriebnahme eines Teils der Brunnen im Hauptschadensbereich infolge der vorbereitenden Arbeiten zur Bodensanierung. 09/2008 – 12/2008: Abschluss der hydraulischen Sanierung im Bereich der Bodensanierung. Reinigung des abgepumpten Grundwassers über einstufige Stripanlage mit Abluftadsorption mit nachgeschalteten Wasseraktivkohlefiltern. 2009 – 2012: Sukzessive Außerbetriebnahme der Förderbrunnen (hydraulische Sicherung) nach dem Erreichen des Sanierungszielwertes von 20 µg/L BTEX. Im Jahr 2007 wurde mit dem Beginn des Teilabrisses der vorhandenen Gebäudesubstanz sowie einem Industrieschornstein aus Betonfertigteilen (einschl. vorlaufender Entkernung und nachlaufender Tiefenenttrümmerung) die Bodensanierung eingeleitet. In einem 1. Bauabschnitt (2008 – 2009) wurde der Bodenaustausch in der gesättigten Zone auf einer Fläche von ca. 2.100 m² in dem zentralen Grundstücksbereich bis in eine Tiefe von 11 m uGOK mittels Rüttelsenkkästen (Wabenverfahren) durchgeführt. Der vorlaufende Bodenaushub zur Beseitigung gering belasteter Bodenhorizonte bis ca. 0,5 m oberhalb des anstehenden Grundwasseranschnittes wurde mit einer Trägerbohlwand gesichert. In einem Teilbereich der Sanierungsfläche wurde dem sauberen Boden ein sauerstoffhaltiges Substrat beigefügt, das durch die Schaffung eines oxidativen Milieus zu einer Verringerung der verbliebenen Restbelastungen durch mikrobielle Abbauprozesse im Grundwasser beitragen sollte. In einem 2. Bauabschnitt (2010) erfolgte der Bodenaustausch im nördlichen Randbereich des Standortes mittels Großlochbohrungen bis zu einer Tiefe von 9 m uGOK an 757 Bohransatzpunkten (DN 1200). Nachfolgend finden sich die mit der Bodensanierung angefallenen Entsorgungsmengen zusammengefasst: Zur weiteren Überwachung des Sanierungserfolgs und zum Schutz der nahe gelegenen Fassungen des Wasserwerks Wuhlheide ist die Fortsetzung des Grundwassermonitorings mit viertel- oder halbjährlichen Beprobungskampagnen als Nachsorgemaßnahme vorgesehen. Die Beobachtung von Verlagerungen aus verbliebenen lokalen Belastungsschwerpunkten erfolgt mittels Modellrechnungen (Stofftransportmodellierungen) und bei Bedarf durch Errichtung zusätzlicher Grundwassermessstellen. Die Gesamtkosten aller Maßnahmen belaufen sich bis Ende 2018 auf ca. 8,77 Mio. €. Bedingt durch die Lage des Standortes in der Trinkwasserschutzzone II des Wasserwerks Wuhlheide, die eine Neubebauung der sanierten Flächen derzeit ausschließt, ist die zukünftige Nutzung noch offen.

Erosionsschutz und Pufferzonen

Erosionsschutz und Pufferzonen Ein Blühstreifen am Ackerrand verringert die Abschwemmung von Boden ins Wasser und auch die Abschwemmung von Düngemitteln und darin möglicherweise enthaltenen Tierarzneimitteln. Maßnahmen, die den Boden vor Erosion schützen, haben weitere positive Effekte. Sie fördern die Bodenfruchtbarkeit und den landwirtschaftlichen Ertrag. Pufferzonen mindern die Auswaschung von Nährstoffen und Pflanzenschutzmitteln und den Eintrag von Tierarzneimitteln in Gewässern. Aufgrund ihrer vielfältigen Wirkungen werden sie im Rahmen der gemeinsamen Agrarpolitik gefördert. Erosionsschutz steigert landwirtschaftlichen Ertrag und verringert Tierarzneimitteleinträge Maßnahmen des Erosionsschutzes verhindern den Abtrag fruchtbarer humoser Ackerkrume durch Wasser- und Winderosion und haben somit positive Auswirkungen auf den Erhalt der Bodenfruchtbarkeit und die Funktionalität von Böden. Ein intakter, gesunder Boden zeichnet sich durch eine natürliche Bodenstruktur, einen standortangepassten Humusgehalt und eine hohe mikrobielle Aktivität aus – Eigenschaften, die einerseits den landwirtschaftlichen Ertrag steigern und andererseits Rückhalt und Abbau von Stoffen wie Tierarznei- und Pflanzenschutzmitteln fördern. Zudem mindern Maßnahmen des Erosionsschutzes die Abschwemmung von Düngemitteln und den darin enthaltenen Tierarzneimitteln in oberirdische Gewässer. Maßnahmen des Erosionsschutzes sind bekannt, werden verbreitet eingesetzt und z. T. auch in unterschiedlichen Agrarumweltmaßnahmenprogrammen gefördert. Weniger bekannt sind ihre positiven Auswirkungen auf die Reduktion von Tierarzneimitteln in der Umwelt. Beispiele dieser Maßnahmen sind: Rückstände auf den Feldern belassen: Ernterückstände und Zwischenfruchtreste, die auf dem Feld verbleiben, verbessern die Bodenqualität und geben dem Boden Stabilität. Sie bilden eine mechanische Barriere, die die Geschwindigkeit des Oberflächenabflusses verringert, womit Bodenerosion verringert wird; Erosionsschutzstreifen (auch bekannt als „ökologische Vorrangflächen“ oder „Pufferstreifen“): Bepflanzte Streifen an den unteren Rändern landwirtschaftlicher Nutzflächen mindern die Fließgeschwindigkeit des Oberflächenabflusses, wodurch eine Verlagerung der partikelgebundenen Tierarzneimittel in Oberflächengewässer verringert wird; Direktsaat oder verringerte Bodenbearbeitung: Diese Maßnahme schützt die Rhizosphäre der zuvor angebauten Kultur, wodurch ihre bodenstützende Struktur erhalten bleibt und der Bodenabtrag verringert wird; Fruchtfolge mit mehrjährigen Kulturen oder Zwischenfruchtanbau: Durch die dauerhafte Bedeckung des Bodens durch Pflanzen können Bodenpartikel und daran anhaftende Tierarzneimittel weniger stark abgetragen werden; Hangparallele Fahrgassen: Fahrgassen, die für die Pflegemaßnahmen auf den Feldern befahren werden, sind ein Hauptpfad für den Abtransport von Wasser, Boden, Gülle und gelösten Tierarzneimitteln. Ihre Minderung bzw. ihre hangparallele Ausrichtung können diesen Abtransport verringern; Hecken oder Baumreihen zwischen den Äckern: Diese Strukturen setzen lokal die Windgeschwindigkeit und damit die Erosionskraft des Windes herab. Durch moderate Beweidung kann ebenfalls die Bodenstruktur verbessert und der Boden durch die Wurzeln der Weidepflanzen stabilisiert werden. Der Tritt der Tiere und das Rupfen an dem Bewuchs macht ihn widerstandsfähig und fördert die Infiltration von Wasser in den Boden. Das reduziert Oberflächenabfluss und damit die ⁠ Erosion ⁠. Maßnahmen des Erosionsschutzes mindern den Abtransport von Bodenpartikeln auf verschiedene Art und Weise. Einige Maßnahmen fördern eine bessere Bodenstruktur, z. B. indem sie die Rhizosphäre, also die Zone um das Wurzelwerk der Pflanzen, schützen. Oberbodenpartikel sind in diesem Falle besser mit dem Bodenkörper verbunden und ihre Erosion z. B. durch Wasser oder Wind wird erschwert. Andere Maßnahmen leisten Erosionsschutz, indem sie die Intensität des Oberflächenabflusses verringern, z. B. durch den Verbleib von Ernterückständen auf den Feldern oder durch bewachsene Streifen an Ackerrändern. Wenn durch ein gestärktes Wurzelwerk der Abtransport von Bodenpartikeln vermindert wird, werden Tierarzneimittel, die an Bodenpartikel adsorbiert sind, nicht abfließen, sondern verbleiben längere Zeit auf dem Acker, so dass sich die Wahrscheinlichkeit ihres mikrobiellen oder chemischen Abbaus erhöht (siehe: Eintrag und Vorkommen von Tierarzneimitteln in der Umwelt ). Maßnahmen, die die Abflussintensität mindern, verlangsamen sowohl den Oberflächenabfluss partikelgebundener Tierarzneimittel als auch die Verlagerung von im Sickerwasser gelösten Tierarzneimitteln. Dies erhöht die Wahrscheinlichkeit, dass sich gelöste Tierarzneimittel an Bodenpartikeln anlagern. Die längere Verweilzeit des Wassers in den Bodenhorizonten der landwirtschaftlichen Nutzflächen erhöht die Wahrscheinlichkeit des Abbaus der gelösten Tierarzneimittel. Zudem verstärken diese Maßnahmen die Bodeninfiltration und dadurch die Interaktionen der gelösten Tierarzneimittel in den einzelnen Bodenhorizonten, was wiederum zu erhöhter Adsorption und erhöhtem biologischem und chemischen Abbau führen kann. Pufferzonen fördern Biodiversität und verringern Tierarzneimitteleintrag Mit Pufferzonen sind natürlich belassene oder mit Gras oder Blühpflanzen bepflanzte Streifen an den Rändern landwirtschaftlicher Flächen („Ackerrandstreifen“ bzw. „Blühstreifen“) wie auch Streifen unmittelbar neben und entlang von oberirdischen Gewässern („Gewässerrandstreifen“ oder „Gewässerschutzstreifen“) gemeint. Dank ihrer positiven Auswirkungen werden diese seit einigen Jahren als Maßnahmen für den Erhalt von ⁠ Biodiversität ⁠(20) und für den Schutz gegen Wassererosion und darüber hinaus zum verbesserten biologischen Abbau von Pflanzenschutzmitteln und Tierarzneimitteln(21) eingesetzt. Blühstreifen werden vor allem zu Biodiversitätszwecken angelegt. Eine angepasste Blühpflanzenmischung und die Kontinuität des Anbaus sind aus Sicht der Biodiversität wichtige Aspekte. Eine gute Blühpflanzenmischung fördert auch eine vielfältige mikrobielle ⁠ Fauna ⁠ im Boden der Streifen, was wiederum den Abbau von Tierarzneimitteln fördert. Gewässerschutzstreifen unterscheiden sich von Ackerrandstreifen hauptsächlich in ihrer Platzierung. Sie werden zudem in der Regel breiter angelegt als Ackerrandstreifen und können auch Büsche und Bäume aufweisen. Da sich die Anlage dieser Pufferstreifen häufig nach den dafür gezahlten Förderungen als Agrarumweltmaßnahme richten, sind die Mindestbreiten der Streifen von Bundesland zu Bundesland unterschiedlich. Wie Erosionsschutzmaßnahmen sind auch Pufferzonen weitverbreitet und werden vielerorts schon umgesetzt. Dauerhaft bewachsene Pufferstreifen werden in Agrarumweltmaßnahmenprogrammen gefördert(22). Die Funktionsweise von Pufferzonen ähnelt der von Maßnahmen des Erosionsschutzes. Sie mindern die Einträge von Tierarzneimitteln und weiteren organischen Schadstoffen (wie z. B. Phosphor) in Gewässern, indem sie: die Infiltration erhöhen, und somit die Boden-Wasser-Interaktionen steigern, was zu einer Sorption an Bodenpartikeln oder aber einem mikrobiellen Abbau von Tierarzneimitteln führen kann; die Abflussgeschwindigkeit mindern, was die ⁠ Erosion ⁠ partikelgebundener Wirkstoffe verringert; die Vielfalt der bodenmikrobiotischen Gemeinschaften fördern, die Tierarzneimittel abbauen können; diejenigen Bodeneigenschaften fördern, die zu einer verstärkten Sorption und Retention von Tierarzneimitteln führen; die Sorption der Tierarzneimittel an Grashalmen und Rasenfilz ermöglichen(23). Die Aufenthaltsdauer des Wassers in den Streifen ist entscheidend, um diese Prozesse zur Entfaltung zu bringen. Die Pufferzonen sind nur dann wirksam, wenn der ⁠ Abfluss ⁠ im Streifen flach ist und kein konzentrierter Rinnenabfluss entsteht. Durch Ackerrandstreifen werden organische Chemikalien effektiver abgebaut als durch ⁠ Gewässerrandstreifen ⁠. Denn Ackerrandstreifen halten den belasteten Oberflächenabfluss (runoff) in direkter Nähe zur landwirtschaftlichen Fläche zurück(24).Die Pflege der Streifen (Mähen, ggf. Beseitigung von Sediment) ist sinnvoll, um den langsamen Abfluss „in der Fläche“ zu erhalten und somit den schnellen Abfluss durch Wasserrinnen zu vermeiden. Darüber hinaus wird die Effektivität bepflanzter Feldstreifen von folgenden Faktoren beeinflusst: Wirkstoffeigenschaften (z.B. schwach oder stark sorbierend), Pflanzenmischung, Bodeneigenschaften, Streifenbreite und -platzierung, Landschaftsstruktur, ⁠ Klima ⁠ und ⁠ Wetter ⁠. Infografik: Tierarzneimittel in der Umwelt: Abbau, Verlagerung und Verbleib (function($, d) { $(document).ready(function() { var lastFocusElement; // init $('#interactive-tool-items-item-content-marker-26046').tooltip({ placement: 'auto', html: true, trigger: 'click', container: '.interactive-tool', template: '<div id="interactive-tool-marker-tooltip-26046" class="tooltip interactive-tool-marker-tooltip" data-style="' + $('#interactive-tool-items-item-content-marker-26046').attr('style') + '"><div class="tooltip-content tooltip-content-color-ci-blue"><a class="tooltip-close" href="#" arial-label="' + Drupal.t('Close tooltip') + '">X</a><div class="tooltip-inner" tabindex="0"></div></div></div>' }); var innerText = $('#interactive-tool-items-item-content-marker-26046').data('original-title'); // @debug: innerText = atob(innerText); innerText = decodeURIComponent(atob(innerText)); $('#interactive-tool-items-item-content-marker-26046').attr('data-original-title', innerText); $('#interactive-tool-items-item-content-marker-26046').attr('aria-label', Drupal.t('Open tooltip')); // Set timeout on page load (wait for image). var interactive_tool_marker_to_init_26046 = false; if (interactive_tool_marker_to_init_26046) { clearTimeout(interactive_tool_marker_to_init_26046); } // Init marker. interactive_tool_marker_to_init_26046 = setTimeout(function() { // Get marker. var marker = $('#interactive-tool-items-item-content-marker-26046'); // Show tooltip on page load. if (marker.hasClass('tooltip-visible') == true) { marker.tooltip('show').addClass('open'); var marker_tooltip = $('#interactive-tool-marker-tooltip-26046'); // Hide tooltips with tooltip close link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); marker.tooltip('hide').removeClass('open'); }); } // Bind own click event for marker. marker.unbind("click keydown").on('click keydown', function(e) { if (e.which != 1 && e.which != 13 && e.which != 32) { return; } // Get last element with focus. lastFocusElement = document.activeElement; // Add open class. var self = $(this); // Hide tooltip and remove open marker icon. if (self.hasClass('open')) { marker.tooltip('hide').removeClass('open'); // Show tooltip and set open marker icon. } else { // Remove all other Tooltips. $('.interactive-tool-marker-tooltip').fadeOut().remove(); // Reset all other marker to non-open. $('.interactive-tool-items-item-content-marker.open').removeClass('open'); marker.tooltip('show').addClass('open'); /* $('html, body').animate({ scrollTop: $(".interactive-tool:eq(0)").offset().top }, 500); */ } // Call Spamspan to reformat emailaddresses Drupal.behaviors.spamspan.attach(); var marker_tooltip = $('#interactive-tool-marker-tooltip-26046'); marker_tooltip.on('keydown', function(e) { // Add Listener on ESC to close Tooltip if (e.which == 27) { marker_tooltip.find('.tooltip-close').trigger('click'); } }) marker_tooltip.find('.tooltip-inner').focus(); // Hide tooltips with tooltip open link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); // Hide tooltip and remove open marker icon. marker.tooltip('hide').removeClass('open'); // Put focus on element before overlay was opened. lastFocusElement.focus(); }); }); // Bind resize event. $(window).on('resize', function() { var marker_tooltip_resize = $('#interactive-tool-marker-tooltip-26046'); if (marker_tooltip_resize.hasClass('in') == true) { marker.tooltip('show'); } }); }, 1000); }); })(jQuery, Drupal); (function($, d) { $(document).ready(function() { var lastFocusElement; // init $('#interactive-tool-items-item-content-marker-26047').tooltip({ placement: 'auto', html: true, trigger: 'click', container: '.interactive-tool', template: '<div id="interactive-tool-marker-tooltip-26047" class="tooltip interactive-tool-marker-tooltip" data-style="' + $('#interactive-tool-items-item-content-marker-26047').attr('style') + '"><div class="tooltip-content tooltip-content-color-ci-blue"><a class="tooltip-close" href="#" arial-label="' + Drupal.t('Close tooltip') + '">X</a><div class="tooltip-inner" tabindex="0"></div></div></div>' }); var innerText = $('#interactive-tool-items-item-content-marker-26047').data('original-title'); // @debug: innerText = atob(innerText); innerText = decodeURIComponent(atob(innerText)); $('#interactive-tool-items-item-content-marker-26047').attr('data-original-title', innerText); $('#interactive-tool-items-item-content-marker-26047').attr('aria-label', Drupal.t('Open tooltip')); // Set timeout on page load (wait for image). var interactive_tool_marker_to_init_26047 = false; if (interactive_tool_marker_to_init_26047) { clearTimeout(interactive_tool_marker_to_init_26047); } // Init marker. interactive_tool_marker_to_init_26047 = setTimeout(function() { // Get marker. var marker = $('#interactive-tool-items-item-content-marker-26047'); // Show tooltip on page load. if (marker.hasClass('tooltip-visible') == true) { marker.tooltip('show').addClass('open'); var marker_tooltip = $('#interactive-tool-marker-tooltip-26047'); // Hide tooltips with tooltip close link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); marker.tooltip('hide').removeClass('open'); }); } // Bind own click event for marker. marker.unbind("click keydown").on('click keydown', function(e) { if (e.which != 1 && e.which != 13 && e.which != 32) { return; } // Get last element with focus. lastFocusElement = document.activeElement; // Add open class. var self = $(this); // Hide tooltip and remove open marker icon. if (self.hasClass('open')) { marker.tooltip('hide').removeClass('open'); // Show tooltip and set open marker icon. } else { // Remove all other Tooltips. $('.interactive-tool-marker-tooltip').fadeOut().remove(); // Reset all other marker to non-open. $('.interactive-tool-items-item-content-marker.open').removeClass('open'); marker.tooltip('show').addClass('open'); /* $('html, body').animate({ scrollTop: $(".interactive-tool:eq(0)").offset().top }, 500); */ } // Call Spamspan to reformat emailaddresses Drupal.behaviors.spamspan.attach(); var marker_tooltip = $('#interactive-tool-marker-tooltip-26047'); marker_tooltip.on('keydown', function(e) { // Add Listener on ESC to close Tooltip if (e.which == 27) { marker_tooltip.find('.tooltip-close').trigger('click'); } }) marker_tooltip.find('.tooltip-inner').focus(); // Hide tooltips with tooltip open link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); // Hide tooltip and remove open marker icon. marker.tooltip('hide').removeClass('open'); // Put focus on element before overlay was opened. lastFocusElement.focus(); }); }); // Bind resize event. $(window).on('resize', function() { var marker_tooltip_resize = $('#interactive-tool-marker-tooltip-26047'); if (marker_tooltip_resize.hasClass('in') == true) { marker.tooltip('show'); } }); }, 1000); }); })(jQuery, Drupal); (function($, d) { $(document).ready(function() { var lastFocusElement; // init $('#interactive-tool-items-item-content-marker-26048').tooltip({ placement: 'auto', html: true, trigger: 'click', container: '.interactive-tool', template: '<div id="interactive-tool-marker-tooltip-26048" class="tooltip interactive-tool-marker-tooltip" data-style="' + $('#interactive-tool-items-item-content-marker-26048').attr('style') + '"><div class="tooltip-content tooltip-content-color-ci-blue"><a class="tooltip-close" href="#" arial-label="' + Drupal.t('Close tooltip') + '">X</a><div class="tooltip-inner" tabindex="0"></div></div></div>' }); var innerText = $('#interactive-tool-items-item-content-marker-26048').data('original-title'); // @debug: innerText = atob(innerText); innerText = decodeURIComponent(atob(innerText)); $('#interactive-tool-items-item-content-marker-26048').attr('data-original-title', innerText); $('#interactive-tool-items-item-content-marker-26048').attr('aria-label', Drupal.t('Open tooltip')); // Set timeout on page load (wait for image). var interactive_tool_marker_to_init_26048 = false; if (interactive_tool_marker_to_init_26048) { clearTimeout(interactive_tool_marker_to_init_26048); } // Init marker. interactive_tool_marker_to_init_26048 = setTimeout(function() { // Get marker. var marker = $('#interactive-tool-items-item-content-marker-26048'); // Show tooltip on page load. if (marker.hasClass('tooltip-visible') == true) { marker.tooltip('show').addClass('open'); var marker_tooltip = $('#interactive-tool-marker-tooltip-26048'); // Hide tooltips with tooltip close link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); marker.tooltip('hide').removeClass('open'); }); } // Bind own click event for marker. marker.unbind("click keydown").on('click keydown', function(e) { if (e.which != 1 && e.which != 13 && e.which != 32) { return; } // Get last element with focus. lastFocusElement = document.activeElement; // Add open class. var self = $(this); // Hide tooltip and remove open marker icon. if (self.hasClass('open')) { marker.tooltip('hide').removeClass('open'); // Show tooltip and set open marker icon. } else { // Remove all other Tooltips. $('.interactive-tool-marker-tooltip').fadeOut().remove(); // Reset all other marker to non-open. $('.interactive-tool-items-item-content-marker.open').removeClass('open'); marker.tooltip('show').addClass('open'); /* $('html, body').animate({ scrollTop: $(".interactive-tool:eq(0)").offset().top }, 500); */ } // Call Spamspan to reformat emailaddresses Drupal.behaviors.spamspan.attach(); var marker_tooltip = $('#interactive-tool-marker-tooltip-26048'); marker_tooltip.on('keydown', function(e) { // Add Listener on ESC to close Tooltip if (e.which == 27) { marker_tooltip.find('.tooltip-close').trigger('click'); } }) marker_tooltip.find('.tooltip-inner').focus(); // Hide tooltips with tooltip open link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); // Hide tooltip and remove open marker icon. marker.tooltip('hide').removeClass('open'); // Put focus on element before overlay was opened. lastFocusElement.focus(); }); }); // Bind resize event. $(window).on('resize', function() { var marker_tooltip_resize = $('#interactive-tool-marker-tooltip-26048'); if (marker_tooltip_resize.hasClass('in') == true) { marker.tooltip('show'); } }); }, 1000); }); })(jQuery, Drupal); (function($, d) { $(document).ready(function() { var lastFocusElement; // init $('#interactive-tool-items-item-content-marker-26049').tooltip({ placement: 'auto', html: true, trigger: 'click', container: '.interactive-tool', template: '<div id="interactive-tool-marker-tooltip-26049" class="tooltip interactive-tool-marker-tooltip" data-style="' + $('#interactive-tool-items-item-content-marker-26049').attr('style') + '"><div class="tooltip-content tooltip-content-color-ci-blue"><a class="tooltip-close" href="#" arial-label="' + Drupal.t('Close tooltip') + '">X</a><div class="tooltip-inner" tabindex="0"></div></div></div>' }); var innerText = $('#interactive-tool-items-item-content-marker-26049').data('original-title'); // @debug: innerText = atob(innerText); innerText = decodeURIComponent(atob(innerText)); $('#interactive-tool-items-item-content-marker-26049').attr('data-original-title', innerText); $('#interactive-tool-items-item-content-marker-26049').attr('aria-label', Drupal.t('Open tooltip')); // Set timeout on page load (wait for image). var interactive_tool_marker_to_init_26049 = false; if (interactive_tool_marker_to_init_26049) { clearTimeout(interactive_tool_marker_to_init_26049); } // Init marker. interactive_tool_marker_to_init_26049 = setTimeout(function() { // Get marker. var marker = $('#interactive-tool-items-item-content-marker-26049'); // Show tooltip on page load. if (marker.hasClass('tooltip-visible') == true) { marker.tooltip('show').addClass('open'); var marker_tooltip = $('#interactive-tool-marker-tooltip-26049'); // Hide tooltips with tooltip close link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); marker.tooltip('hide').removeClass('open'); }); } // Bind own click event for marker. marker.unbind("click keydown").on('click keydown', function(e) { if (e.which != 1 && e.which != 13 && e.which != 32) { return; } // Get last element with focus. lastFocusElement = document.activeElement; // Add open class. var self = $(this); // Hide tooltip and remove open marker icon. if (self.hasClass('open')) { marker.tooltip('hide').removeClass('open'); // Show tooltip and set open marker icon. } else { // Remove all other Tooltips. $('.interactive-tool-marker-tooltip').fadeOut().remove(); // Reset all other marker to non-open. $('.interactive-tool-items-item-content-marker.open').removeClass('open'); marker.tooltip('show').addClass('open'); /* $('html, body').animate({ scrollTop: $(".interactive-tool:eq(0)").offset().top }, 500); */ } // Call Spamspan to reformat emailaddresses Drupal.behaviors.spamspan.attach(); var marker_tooltip = $('#interactive-tool-marker-tooltip-26049'); marker_tooltip.on('keydown', function(e) { // Add Listener on ESC to close Tooltip if (e.which == 27) { marker_tooltip.find('.tooltip-close').trigger('click'); } }) marker_tooltip.find('.tooltip-inner').focus(); // Hide tooltips with tooltip open link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); // Hide tooltip and remove open marker icon. marker.tooltip('hide').removeClass('open'); // Put focus on element before overlay was opened. lastFocusElement.focus(); }); }); // Bind resize event. $(window).on('resize', function() { var marker_tooltip_resize = $('#interactive-tool-marker-tooltip-26049'); if (marker_tooltip_resize.hasClass('in') == true) { marker.tooltip('show'); } }); }, 1000); }); })(jQuery, Drupal); (function($, d) { $(document).ready(function() { var lastFocusElement; // init $('#interactive-tool-items-item-content-marker-26050').tooltip({ placement: 'auto', html: true, trigger: 'click', container: '.interactive-tool', template: '<div id="interactive-tool-marker-tooltip-26050" class="tooltip interactive-tool-marker-tooltip" data-style="' + $('#interactive-tool-items-item-content-marker-26050').attr('style') + '"><div class="tooltip-content tooltip-content-color-ci-blue"><a class="tooltip-close" href="#" arial-label="' + Drupal.t('Close tooltip') + '">X</a><div class="tooltip-inner" tabindex="0"></div></div></div>' }); var innerText = $('#interactive-tool-items-item-content-marker-26050').data('original-title'); // @debug: innerText = atob(innerText); innerText = decodeURIComponent(atob(innerText)); $('#interactive-tool-items-item-content-marker-26050').attr('data-original-title', innerText); $('#interactive-tool-items-item-content-marker-26050').attr('aria-label', Drupal.t('Open tooltip')); // Set timeout on page load (wait for image). var interactive_tool_marker_to_init_26050 = false; if (interactive_tool_marker_to_init_26050) { clearTimeout(interactive_tool_marker_to_init_26050); } // Init marker. interactive_tool_marker_to_init_26050 = setTimeout(function() { // Get marker. var marker = $('#interactive-tool-items-item-content-marker-26050'); // Show tooltip on page load. if (marker.hasClass('tooltip-visible') == true) { marker.tooltip('show').addClass('open'); var marker_tooltip = $('#interactive-tool-marker-tooltip-26050'); // Hide tooltips with tooltip close link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); marker.tooltip('hide').removeClass('open'); }); } // Bind own click event for marker. marker.unbind("click keydown").on('click keydown', function(e) { if (e.which != 1 && e.which != 13 && e.which != 32) { return; } // Get last element with focus. lastFocusElement = document.activeElement; // Add open class. var self = $(this); // Hide tooltip and remove open marker icon. if (self.hasClass('open')) { marker.tooltip('hide').removeClass('open'); // Show tooltip and set open marker icon. } else { // Remove all other Tooltips. $('.interactive-tool-marker-tooltip').fadeOut().remove(); // Reset all other marker to non-open. $('.interactive-tool-items-item-content-marker.open').removeClass('open'); marker.tooltip('show').addClass('open'); /* $('html, body').animate({ scrollTop: $(".interactive-tool:eq(0)").offset().top }, 500); */ } // Call Spamspan to reformat emailaddresses Drupal.behaviors.spamspan.attach(); var marker_tooltip = $('#interactive-tool-marker-tooltip-26050'); marker_tooltip.on('keydown', function(e) { // Add Listener on ESC to close Tooltip if (e.which == 27) { marker_tooltip.find('.tooltip-close').trigger('click'); } }) marker_tooltip.find('.tooltip-inner').focus(); // Hide tooltips with tooltip open link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); // Hide tooltip and remove open marker icon. marker.tooltip('hide').removeClass('open'); // Put focus on element before overlay was opened. lastFocusElement.focus(); }); }); // Bind resize event. $(window).on('resize', function() { var marker_tooltip_resize = $('#interactive-tool-marker-tooltip-26050'); if (marker_tooltip_resize.hasClass('in') == true) { marker.tooltip('show'); } }); }, 1000); }); })(jQuery, Drupal); (function($, d) { $(document).ready(function() { var lastFocusElement; // init $('#interactive-tool-items-item-content-marker-26081').tooltip({ placement: 'auto', html: true, trigger: 'click', container: '.interactive-tool', template: '<div id="interactive-tool-marker-tooltip-26081" class="tooltip interactive-tool-marker-tooltip" data-style="' + $('#interactive-tool-items-item-content-marker-26081').attr('style') + '"><div class="tooltip-content tooltip-content-color-ci-blue"><a class="tooltip-close" href="#" arial-label="' + Drupal.t('Close tooltip') + '">X</a><div class="tooltip-inner" tabindex="0"></div></div></div>' }); var innerText = $('#interactive-tool-items-item-content-marker-26081').data('original-title'); // @debug: innerText = atob(innerText); innerText = decodeURIComponent(atob(innerText)); $('#interactive-tool-items-item-content-marker-26081').attr('data-original-title', innerText); $('#interactive-tool-items-item-content-marker-26081').attr('aria-label', Drupal.t('Open tooltip')); // Set timeout on page load (wait for image). var interactive_tool_marker_to_init_26081 = false; if (interactive_tool_marker_to_init_26081) { clearTimeout(interactive_tool_marker_to_init_26081); } // Init marker. interactive_tool_marker_to_init_26081 = setTimeout(function() { // Get marker. var marker = $('#interactive-tool-items-item-content-marker-26081'); // Show tooltip on page load. if (marker.hasClass('tooltip-visible') == true) { marker.tooltip('show').addClass('open'); var marker_tooltip = $('#interactive-tool-marker-tooltip-26081'); // Hide tooltips with tooltip close link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); marker.tooltip('hide').removeClass('open'); }); } // Bind own click event for marker. marker.unbind("click keydown").on('click keydown', function(e) { if (e.which != 1 && e.which != 13 && e.which != 32) { return; } // Get last element with focus. lastFocusElement = document.activeElement; // Add open class. var self = $(this); // Hide tooltip and remove open marker icon. if (self.hasClass('open')) { marker.tooltip('hide').removeClass('open'); // Show tooltip and set open marker icon. } else { // Remove all other Tooltips. $('.interactive-tool-marker-tooltip').fadeOut().remove(); // Reset all other marker to non-open. $('.interactive-tool-items-item-content-marker.open').removeClass('open'); marker.tooltip('show').addClass('open'); /* $('html, body').animate({ scrollTop: $(".interactive-tool:eq(0)").offset().top }, 500); */ } // Call Spamspan to reformat emailaddresses Drupal.behaviors.spamspan.attach(); var marker_tooltip = $('#interactive-tool-marker-tooltip-26081'); marker_tooltip.on('keydown', function(e) { // Add Listener on ESC to close Tooltip if (e.which == 27) { marker_tooltip.find('.tooltip-close').trigger('click'); } }) marker_tooltip.find('.tooltip-inner').focus(); // Hide tooltips with tooltip open link. marker_tooltip.find('.tooltip-close').on('click', function(e) { e.preventDefault(); // Hide tooltip and remove open marker icon. marker.tooltip('hide').removeClass('open'); // Put focus on element before overlay was opened. lastFocusElement.focus(); }); }); // Bind resize event. $(window).on('resize', function() { var marker_tooltip_resize = $('#interactive-tool-marker-tooltip-26081'); if (marker_tooltip_resize.hasClass('in') == true) { marker.tooltip('show'); } }); }, 1000); }); })(jQuery, Drupal); Literatur 20. Jahn, T., Hötker, H., Oppermann, R., Bleil, R., Vele, L. 2014. Protection of biodiversity of free living birds and mammals in respect of the effects of pesticides. Michael-Otto-Institut im NABU, Forschungs- und Bildungszentrum für Feuchtgebiete und Vogelschutz, Institut für Agrarökologie und ⁠ Biodiversität ⁠ (IFAB). 21. Unger, I. M., Goyne, K. W., Kennedy, A. C., Kremer, R. J., McLain, J. E. T., Williams, C. F. 2013. Antibiotic Effects on Microbial Community Characteristics in Soils under Conservation Management Practices. Soil Science Society of America Journal, 77, 100. 22. Ministerium für ländlichen Raum und Verbraucherschutz Baden-Württemberg (2015). Nationaler Aktionsplan zur nachhaltigen Anwendung von Pflanzenschutzmitteln (NAP). 23. Krutz, L. J., Senseman, S. A., Zablotowicz, R. M., Matocha, M. A. 2005. Reducing herbicide runoff from agricultural fields with vegetative filter strips: a review. Weed Science 53, 353-367. 24. Reichenberger, S., Bach, M., Skitschak, A., Frede, H. G. (2007). ⁠ Mitigation ⁠ strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ, 384, 1-35.

Regenbogenfabrik Berlin-Kreuzberg

Das Quartier der heutigen „Regenbogenfabrik“ im Bereich der Lausitzer Straße 22 in 10999 Berlin Kreuzberg entstand um ca. 1875. Dabei wurden innerstädtische Wohnbebauungen gemischt mit gewerblicher Nutzung errichtet. Die 5-geschossigen Wohngebäude mit Unterkellerung sind in den sandigen Schichten unterhalb eines Torfhorizontes gegründet. Des Weiteren entstanden Nebengebäude unterschiedlichster Art, die teils unterkellert und ebenfalls in den Sandschichten gegründet sind. Die historische Recherche ergab, dass bis ca. 1920 im Hofbereich des ca. 1.500 m² großen Grundstücks im Herzen von Berlin Kreuzberg ein Sägewerk betrieben wurde. Die Umgebung von Wohnbebauung blieb bestehen. In der Zeit von 1928 bis 1978 wurde der Hof mit den angrenzenden Gebäuden als Chemische Fabrik mit angeschlossenem Chemikalienhandel genutzt. Im 2. Weltkrieg wurde der Hof und die angrenzenden Gebäude stark beschädigt. Dabei wurden gelagerte Fässer und Tanks undicht und die darin gelagerten Stoffe gelangten in den Untergrund. In den Nachkriegsjahren wurde das Gelände rekonstruiert und diverse Sanierungs-, Renovierungs- und Umbauarbeiten durchgeführt. Seit etwa der 80er Jahre dient es als Kulturzentrum „Regenbogenfabrik“ mit Kita, Begegnungsstätte, Hostel, Café und weiteren Einrichtungen. Untersuchungen des Bodens weisen im Bereich der Lausitzer Straße 22 unter einer ca. 2 m mächtigen anthropogenen Auffüllungsschicht eine ca. 1–1,3 m mächtige Schicht aus holozänen Faulschlämmen bzw. Torfen unterschiedlichen Zersetzungsgrades auf. Darunter schließen sich im Liegende bis ca. 15 m unter Geländeoberkante (GOK) Fein- und Mittelsande an. In ca. 100 m nordwestlicher Richtung im Bereich des Jugendzentrums CHIP (Reichenberger Straße 44/45 ) sind in einer Tiefe von 13 m stark schluffige Sande bzw. Schluffe unterschiedlicher Mächtigkeiten eingeschaltet, die den Aquifer in einen oberen und einen unteren Bereich trennen. Bis in die Tiefe von ca. 30 m ist anschließend mit Mittelsanden zu rechnen, welche wiederum von Sand-/Tonlagerungen im Bereich von 30–35 m unter Gelände unterlagert werden. Der Grundwasserflurabstand beträgt in Abhängigkeit von der Geländemorphologie ca. 2,5–3,0 m [ca. 32,10 m Normalhöhennull (NHN)]. Die Grundwasserfließrichtung ist nach Nordwest gerichtet und die Fließgeschwindigkeit sehr gering. Der Bereich der Regenbogenfabrik liegt außerhalb von Trinkwasserschutzzonen. In den 80er Jahren wurde ein LCKW-Schaden (LCKW = Leichtflüchtige chlorierte Kohlenwasserstoffe) im Untergrund ermittelt. Zur Gefahrenabwehr wurde unverzüglich ein Bodenaustausch der wasserungesättigten Bodenzone mit einer Tiefe von ca. 1–2 m bis zum Erreichen des Torfhorizontes vorgenommen. Im Anschluss wurde das Gelände mit sauberem Sand aufgefüllt und Wege und Grünanlagen angelegt. Dadurch wurde zunächst der Gefährdungspfad Boden – Mensch unterbrochen. In späteren detaillierten Erkundungen von 1988 bis 1989 im Auftrag des Senats von Berlin stellte sich heraus, dass die unterhalb des ausgetauschten Bodens liegende Torfschicht mit LCKW-Bodenbelastungen zwischen 200–500 mg/kg kontaminiert ist. Die Torfschicht wirkt dabei als langjährige Quelle, die die einmal aufgenommenen LCKW sehr langsam über Rückdiffusion aus dem immobilen Porenraum an das Grundwasser abgibt. Unterhalb der Torfschicht lagern relativ geringbelastete Sande. Es wurden Grundwasserbelastungen mit bis zu 260 mg/l LCKW im Bereich des Grundstücks ermittelt. Aufgrund der vorgefundenen Belastungen wurde im Zeitraum von Dezember 1990 bis Juni 1992 ein Pilotprojekt zur in-situ-Grundwassersanierung im Hydro-Airlift-Verfahren (System „Züblin“) durchgeführt und anschließend abgebrochen, da die Maßnahme zur Sanierung des Standortes aus verschiedenen Gründen nicht zielführend war. Im Zeitraum 2003 bis 2004 konnte die Grundwasserbelastung weiterhin bestätigt und der Schaden eingegrenzt werden. Zu diesem Zeitpunkt wurde der Schwerpunkt der Grundwasserbelastung unterhalb des Kellers der heutigen Regenbogenfabrik mit Konzentrationen von bis zu ca. 180.000 µg/l LCKW angetroffen. Nachrangig wurde eine Verunreinigung mit BTEX (leichtflüchtige aromatische Kohlenwasserstoffe) ermittelt. Ausgehend von der LCKW-Quelle war aufgrund der guten Lösungseigenschaften der LCKW eine Kernfahne in Richtung Nordwest im Tiefenbereich von ca. 10–30 m unter GOK mit Konzentrationen von ca. 10.000 µg/l ausgebildet. Im weiteren Grundwasserabstrom nahmen die LCKW Konzentrationen auf < 3.000 µg/l ab. Insgesamt erstreckte sich der Schaden zu diesem Zeitpunkt horizontal über eine Luftlinienstrecke von bis zu 500 m. Das Umwelt- und Naturschutzamt des Bezirkes Friedrichshain-Kreuzberg als zuständige Ordnungsbehörde forderte weitere Maßnahmen zur Gefahrenabwehr. Nach in-situ-Erkundungen im Jahr 2006 wurden 2007 weitere Grundwassermessstellen im Bereich der LCKW Fahne errichtet und auf die bekannten Schadstoffe zuzüglich der Milieuparameter hinsichtlich mikrobiologischer Abbauprozesse untersucht. Hierbei wurde festgestellt, dass ein Abbau der LCKW über die einzelnen Chlorierungsstufen bis zum unschädlichen Ethen stattfindet. Das vorhandene Mikroorganismen-Konsortium am Standort ließ die Durchführung eines mikrobiologischen Sanierungsverfahrens in Form einer reduktiven Dechlorierung durch Zugabe von Nährsubstraten (Zuckerrübenmelasse) als Vorzugsvariante bestehen. Diese Methode ist nicht nur sehr preiswert, sondern für diesen Standort auch äußerst effektiv. Zur Prüfung der großflächigen Umsetzbarkeit wurde ein Versuchsfeld für Substratinfiltrationen im Bereich des Jugendzentrums CHIP im Abstrom der Regenbogenfabrik geplant und von Oktober 2007 bis August 2008 ein 1. Feldversuch am Standort erfolgreich durchgeführt. Aufgrund der positiven Ergebnisse wurde die Maßnahme im full-scale Maßstab geplant. Es wurden 2011/2012 und 2013/2014 zusätzliche Infiltrationsgalerien errichtet, um Zuckerrübenmelasse verdünnt mit Standortwasser mittels eines Verteilersystems mit geringem Druck zu infiltrieren. Die Infiltrationsgalerien bestehen jeweils aus einer Reihe von Ober- und Unterpegeln. Der Reihenabstand der Infiltrationspunkte liegt abhängig von der baulichen Situation vor Ort zwischen ca. 3 bis 4 m. Im April 2023 wurden die bestehenden Infiltrationsgalerien um insgesamt 30 flache Infiltrationspegel erweitert. Trotz der bisherigen Sanierungserfolge wird aus der im Innenhof der Regenbogenfabrik oberflächennah vorhandenen, hoch belasteten und als Schadstoffdepot wirkenden Torfschicht weiterhin LCKW in das Grundwasser eingetragen. Aus diesem Grund wurde im Frühjahr 2023 ein Feldversuch zur Grundwasserzirkulation am Brunnen BR 13 durchgeführt mit dem Ziel, den Austrag der LCKW aus dem Torfkörper potentiell zu beschleunigen und den LCKW-Abbau somit perspektivisch zu verkürzen. Dabei wurde aus dem tiefer verfilterten Brunnen BR 13 b Grundwasser entnommen, mit Melasse versetzt und in den oberflächennah verfilterten Brunnen BR 13 a bzw. den Infiltrationspegel IP 31 reinfiltriert. Es zeigte sich im Laufe des Versuches zunächst eine signifikant höhere Mobilisation von LCKW aus der Torfschicht in das Grundwasser. Im weiteren Verlauf war eine deutliche Abnahme der LCKW-Konzentrationen und eine verstärkte Metabolisierung der höher chlorierten LCKW in Richtung der niedrig chlorierten LCKW bzw. dem harmlosen Zielabbaupodukt Ethen festzustellen. Der Feldversuch hat somit deutlich gezeigt, dass die Grundwasserzirkulation den cometaoblischen reduktiven LCKW-Abbau am Standort beschleunigen kann. Das Wirkprinzip basiert darauf, dass anaerobe Bakterien organische Substrate für ihr Wachstum benötigen. Die Energie für den Stoffwechsel unter sauerstoffarmen Bedingungen erhalten die Bakterien durch Übertragung von Reduktionsäquivalenten (H+ und e-) von Elektronenspendern auf Elektronenempfänger. Unter verschiedenen Redoxbedingungen werden durch die Bakterien die Stoffe Nitrat, Mangan, Eisen, Sulfat und Kohlendioxid als Elektronenempfänger benutzt. Dieser Prozess ist als anaerobe Atmung bekannt und wird durch die entsprechenden Bakterien auch bei der reduktiven Dechlorierung von LCKW bis hin zum unschädlichen Ethen angewandt. Hierbei sind die LCKW die Elektronenempfänger. Das Wirkprinzip des anaeroben reduktiven LCKW-Abbaus kann in den direkten und indirekten (cometabolitischen) LCKW-Abbau unterschieden werden. Es ist davon auszugehen, dass an kontaminierten Standorten jeweils beide Prozesse parallel ablaufen. Direkt anaerober Abbau von LCKW: Beim direkten anaeroben Abbau nutzen die Bakterien die LCKW als Elektronenempfänger und Wasserstoffatome als Elektronenspender. Durch den Austausch von Chloratomen mit Wasserstoffatomen gewinnen die Bakterien direkt Energie. Dieser Prozess wird als Halorespiration oder Chloratmung bezeichnet. Der für diesen Prozess benötigte Wasserstoff wird durch die Fermentierung (Gärung) von organischem Material bereitgestellt. Indirekt cometabolitischer Abbau von LCKW: Zusätzlich im Aquifer vorhandenes organisches Substrat dient abbauaktiven Bakterien als Energie- und Kohlenstofflieferant. Für den Aufschluss und Abbau des organischen Substrates produzieren die entsprechenden Bakterien Enzyme. Mit diesen Enzymen können unter anderem auch die LCKW abgebaut werden. Dieser Abbaumechanismus wird als cometabolischer Abbau von LCKW bezeichnet und steht in Konkurrenz zu anderen Elektronenempfängern wie z.B. Sulfat und Nitrat. Allgemein sind die natürlich ablaufenden Abbauprozesse stark an die jeweiligen Milieubedingungen (Redox-Verhältnisse, Verfügbarkeit von O 2 , pH-Wert) im Aquifer gebunden. Um den natürlichen am Standort stattfindenden Abbau von LCKW zu beschleunigen, wird organisches Substrat in Form von Melasse dem Grundwasser zugeführt. Häufig sind verschiedene Bakterienarten am schrittweisen mikrobiellen Abbau von LCKW beteiligt. Das Bakterium Dehalococcoides ethenogenes ist das derzeit einzig bekannte Bakterium, dass LCKW komplett vom PCE (PCE = Tetrachlorethen, auch Perchlorethen) bis zum Ethen aufspalten kann Seit Beginn der Durchführung der Melasseinfiltrationen im full-scale-Maßstab im Jahr 2011 sind bereits erste deutlich positive Entwicklungen im Bereich der einzelnen Infilltrationsgalerien zu erkennen. Im folgenden Beispiel wird hierbei die Überwachungsmessstelle MMS 5 OP der Infiltrationsgalerie 1.1 dargestellt, an der die Entwicklungen aufgezeigt werden können. Es ist deutlich zu erkennen, dass durch die Stimulation des mikrobiologischen Abbaus die Bildung von Ethen (in den Abbildungen Rosa) und ein Rückgang von VC (Vinylchlorid) und Cis 1,2 DCE (Cis-1,2-Dichlorethen) stattfindet. An anderen Messstellen im Untersuchungsgebiet, wo zum Teil noch vor der Infiltration große Mengen an hochchlorierten LCKW vorlagen, wurden diese durch die mikrobiologische Dechlorierung bereits zu niedrigchlorierten LCKW, auf dem Weg zum unschädlichen Ethen, abgebaut. Es sind zum Teil auch deutliche Reduzierungen in den Summenkonzentrationen der LCKW zu erkennen. Die seit ca. 2018 anfallenden jährlichen Kosten für die mikrobiologische Sanierung durch Zugabe von Melasse, das begleitende Grundwassermonitoring, Installation der Sanierungsinfrastruktur und ingenieurtechnische Begleitung belaufen sich auf ca. 85.000 € brutto pro Jahr.

Emissionen der Landnutzung, -änderung und Forstwirtschaft

Emissionen der Landnutzung, -änderung und Forstwirtschaft Wälder, Böden und ihre Vegetation speichern Kohlenstoff. Bei intensiver Nutzung wird Kohlendioxid freigesetzt. Maßnahmen, die die Freisetzung verhindern sollen, richten sich vor allem auf eine nachhaltige Bewirtschaftung der Wälder, den Erhalt von Dauergrünland, bodenschonende Bearbeitungsmethoden im Ackerbau, eine Reduzierung der Entwässerung und Wiedervernässung von Moorböden. Bedeutung von Landnutzung und Forstwirtschaft Der Kohlenstoffzyklus stellt im komplexen Klimasystem unserer Erde ein regulierendes Element dar. Durch die Vegetation wird Kohlendioxid (CO 2 ) aus der Luft mittels ⁠ Photosynthese ⁠ gebunden und durch natürlichen mikrobiellen Abbau freigesetzt. Zu den größten globalen Kohlenstoffspeichern gehören Meere, Böden und Waldökosysteme. Wälder bedecken weltweit ca. 31 % der Landoberfläche (siehe FAO Report 2020 ). Bedingt durch einen höheren Biomassezuwachs wirken insbesondere ⁠ boreale ⁠ Wälder in der nördlichen Hemisphäre als Kohlendioxid-Senken. Nach § 1.8 des Klimarahmenabkommens der Vereinten Nationen werden Senken als Prozesse, Aktivitäten oder Mechanismen definiert, die Treibhausgase (THG), ⁠ Aerosole ⁠ oder Vorläufersubstanzen von Treibhausgasen aus der ⁠ Atmosphäre ⁠ entfernen. Im Boden wird Kohlenstoff langfristig durch sog. Humifizierungsprozesse eingebaut. Global ist etwa fünfmal mehr Kohlenstoff im Boden gespeichert als in der Vegetation (siehe IPCC Special Report on Land Use, Land Use Change and Forestry ). Boden kann daher als wichtigster Kohlenstoffspeicher betrachtet werden. Natürliche Mineralisierungsprozesse führen im Boden zum Abbau der organischen Bodensubstanz und zur Freisetzung von den Treibhausgasen CO 2 , Methan und Lachgas. Der Aufbau und Abbau organischer Substanz steht in einem dynamischen Gleichgewicht. Die voran genannten Prozesse werden unter der Kategorie/Sektor „Landnutzung, ⁠ Landnutzungsänderung ⁠ und Forstwirtschaft“ (kurz ⁠ LULUCF ⁠) bilanziert. Modellierung von Treibhausgas-Emissionen aus Landnutzungsänderung Jährliche Veränderungen des nationalen Kohlenstoffhaushalts, die durch Änderungen der ⁠ Landnutzung ⁠ entstehen, werden über ein Gleichgewichtsmodell berechnet, welches für Deutschland auf einem Stichprobensystem mit rund 36 Millionen Stichprobenpunkten basiert. Für die Kartenerstellung der Landnutzung und -bedeckung werden zunehmend satellitengestützte Daten eingesetzt, um so die realen Gegebenheiten genauer abbilden zu können. Die nationalen Flächen werden in die Kategorien Wald, Acker- sowie Grünland, Feuchtgebiete, Siedlungen und Flächen anderer Nutzung unterteilt (siehe auch Struktur der Flächennutzung ). Die Bilanzierung (Netto) erfolgt über die Summe der jeweiligen Zu- bzw. Abnahmen der Kohlenstoffpools (ober- und unterirdische ⁠Biomasse⁠, ⁠Totholz⁠, Streu, organische und mineralische Böden und Holzprodukte) in den verschiedenen Landnutzungskategorien. Allgemeine Emissionsentwicklung Die aktuelle Emissionsentwicklung ist für den Sektor ⁠ LULUCF ⁠ zunehmend dramatisch. In den letzten Jahren ist der Sektor von einer abnehmenden Netto-Kohlenstoffspeicherung im Wald sowie von hohen THG-Emissionen der organischen Böden des Acker- und Grünlands geprägt (Netto THG-Emissionen in 1990: rund +40 Mio. t CO 2 Äquivalente und in 2022: + 4 Mio. t CO 2 Äquivalente). Im Rahmen des novellierten Klimaschutzgesetzes (KSG) wird eine Schätzung für das Vorjahr Vorjahr 2023 vorgelegt. Diese liefert für LULUCF nur Gesamtemissionen, deren Werte als unsicher einzustufen sind. Die Werte liegen bei 3,6 Mio. t CO 2 Äquivalenten. Aus diesem Grunde werden in den folgenden Abschnitten nur die Daten der Berichterstattung 2024 für das Jahr 2022 betrachtet. Veränderung des Waldbestands Die Emissionen sowie die Speicherung von Kohlenstoff bzw. CO 2 für die Kategorie Wald werden auf Grundlage von Bundeswaldinventuren berechnet. Bei der Einbindung von Kohlenstoff spielt insbesondere der Wald eine entscheidende Rolle als Netto-Kohlenstoffsenke. In der Waldkategorie sind die Pools ⁠ Biomasse ⁠ (69,6%), mineralische Böden (21,8 %) und ⁠ Totholz ⁠ (8,6 %) ausschlaggebend. Zu den Emissionsquellen im Wald zählen Streu, Drainage organischer Böden, Mineralisierung und Waldbrände. Zusammen machen diese Emissionsquellen nur einen Anteil von 7,4 % an der Treibhausgasmenge des deutschen Waldes aus. In den Jahren 1990 und 2007 trafen auf Deutschland Orkane (2007 war es der Sturm Kyrill), die zu erheblichem Holzbruch mit einem daraus resultierenden hohen Sturmholzaufkommen in den Folgejahren führten (siehe dazu NIR ). In 1990 wurden rund -19,5 Mio. t CO 2 -Äquivalente im Wald an CO 2 -Emissionen gespeichert. Im Jahr 2022 waren es -39,7 Mio. t CO 2 -Äquivalente (siehe Tab. „Emissionen und Senken im Bereich ⁠ Landnutzung ⁠, ⁠ Landnutzungsänderung ⁠ und Forstwirtschaft“). Inwieweit die Ereignisse der letzten Jahre wie Stürme, ⁠ Dürre ⁠ und Insekten Einfluss auf den Kohlenstoffspeicher Wald haben, werden erst die Analysen der Bundeswaldinventur 2022 aufzeigen, deren Ergebnisse kontinuierlich ab dem Jahr 2023 (und der Berichterstattung 2025) im ⁠ LULUCF ⁠-Inventar berücksichtigt werden können. Offensichtlich ist aber: Der Zustand des deutschen Waldes ist zunehmend besorgniserregend. Treibhausgas-Emissionen aus Waldbränden Bei Waldbränden werden neben CO 2 auch sonstige Treibhausgase bzw. Vorläufersubstanzen (CO, CH 4 , N 2 O, NOx und ⁠ NMVOC ⁠) freigesetzt. Aufgrund der klimatischen Lage Deutschlands und der Maßnahmen zur Vorbeugung von Waldbränden sind Waldbrände ein eher seltenes Ereignis, was durch die in der Waldbrandstatistik erfassten Waldbrandflächen bestätigt wird. Das Jahr 2022 war ein überdurchschnittliches Waldbrandjahr im Vergleich zum langjährigen Mittel. Dies gilt sowohl hinsichtlich der Anzahl auftretender Waldbrände als auch in Bezug auf die jeweils betroffene Waldfläche pro Brand (siehe mehr zu Waldbränden ). Durch die Brände wurden ca. 0,28 Mio. t CO 2 -Äquivalente an Treibhausgasen freigesetzt. Werden nur die CO 2 -Emissionen aus Waldbrand (0,25 Mio. t CO 2 -Äquivalente) betrachtet, machen diese im Verhältnis zu den CO 2 -Emissionen des deutschen Gesamtinventars nur einen verschwindend kleinen Bruchteil aus. Veränderungen bei Ackerland und Grünland Mit den Kategorien Ackerland und Grünland werden die Emissionen sowie die Einbindung von CO 2 aus mineralischen und organischen Böden, der ober- und unterirdischen ⁠ Biomasse ⁠ sowie direkte und indirekte Lachgasemissionen durch Humusverluste aus Mineralböden nach ⁠ Landnutzungsänderung ⁠ sowie Methanemissionen aus organischen Böden und Entwässerungsgräben berücksichtigt. Direkte Lachgas-Emissionen aus organischen Böden werden im Bereich Landwirtschaft unter landwirtschaftliche Böden berichtet. Für die Landnutzungskategorie Ackerland betrugen im Jahr 2022 die THG-Gesamtemissionen 15,6 Mio. t CO 2 Äquivalente und fielen damit um 0,9 Mio. t CO 2 Äquivalente ≙ 6 % größer im Vergleich zum Basisjahr 1990 aus (siehe Tab. „Emissionen und Senken im Bereich ⁠ Landnutzung ⁠, Landnutzungsänderung und Forstwirtschaft“). Hauptquellen sind die ackerbaulich genutzten organische Böden (74,1 %) und die Mineralböden (21,2 %), letztere hauptsächlich infolge des Grünlandumbruchs. Die ⁠ anthropogen ⁠ bedingte Netto-Freisetzung von CO 2 aus der Biomasse (4,7 %) ist im Ackerlandsektor gering. Dominierendes ⁠ Treibhausgas ⁠ in der Kategorie Ackerland ist CO 2 (2022: 14,7 Mio. t CO 2 Äquivalente, rund 97 %). Die Landnutzungskategorie Grünland wird in Grünland im engeren Sinne, in Gehölze und weiter in Hecken unterteilt. Die Unterkategorien unterscheiden sich bezüglich ihrer Emissionen sowohl qualitativ als auch quantitativ deutlich voneinander. Die Unterkategorie Grünland im engeren Sinne (dazu gehören z.B. Wiesen, Weiden, Mähweiden etc.) ist eine CO 2 -Quelle, welche durch die Emissionen aus organischen Böden dominiert wird. Für die Landnutzungskategorie Grünland wurden Netto-THG-Emissionen insgesamt in Höhe von 22,1 Mio. t CO 2 Äquivalenten errechnet. Diese fallen um rund 6,7 Mio. t CO 2 Äquivalente ≙ 23 % niedriger als im Basisjahr 1990 aus. Dieser abnehmende Trend wird durch die Pools Biomasse und Mineralböden beeinflusst. Mineralböden stellen eine anhaltende Kohlenstoffsenke dar. Die zunehmende Senkenleistung der Mineralböden der Unterkategorie Grünland im engeren Sinne beträgt in 2022 -5,1 Mio. t CO 2 . Moore (organische Böden) Drainierte Moorböden (d.h. entwässerte organische Böden) gehören zu den Hotspots für Treibhausgase und kommen in den meisten Landnutzungskategorien vor. Im Torf von Moorböden ist besonders viel Kohlenstoff gespeichert, welches als Kohlenstoffdioxid freigesetzt wird, wenn diese Torfschichten austrocken. Bei höheren Wasserständen werden mehr Methan-Emissionen freigesetzt. Zusätzlich entstehen Lachgas-Emissionen. Im Jahr 2022 wurden aus Moorböden um die 53,4 Mio. t CO 2 Äquivalente an THG-Emissionen (CO 2 -Emissionen: 47,9 Mio. t CO 2 Äquivalente, Methan-Emissionen: 1,7 Mio. t CO 2 Äquivalente, Lachgas-Emissionen: 0,4 Mio. t CO 2 Äquivalente) freigesetzt. Das entspricht etwas mehr als 7 % der gesamten Treibhausgasemissionen in Deutschland im Jahr 2022. (siehe Abb. "⁠ Treibhausgas ⁠-Emissionen aus Mooren"). Die Menge an freigesetzten CO 2 -Emissionen aus Mooren ist somit höher als die gesamten CO 2 -Emissionen des Industriesektors (41,0 Mio. t CO 2 ). Landwirtschaftlich genutzte Moorböden Drainierte Moorböden werden überwiegend landwirtschaftlich genutzt. Die dabei entstehenden Emissionen aus organischen Böden werden deshalb in den Landnutzungskategorien Ackerland und Grünland im engeren Sinne (d.h. Wiesen, Weiden, Mähweiden) erfasst. Hinzu kommen die Lachgasemissionen aus den organischen Böden (Histosole) des Sektors Landwirtschaft. Insgesamt wurde für diese Bereiche eine Emissionsmenge von rund 43,0 Mio. t CO 2 -Äquivalente in 2022 (folgende Angaben in Mio. t CO 2 -Äquivalente: CO 2 : 38,6, Methan: 1,0 und Lachgas: 3,2) freigesetzt, was insgesamt einem Anteil von 80,5 % an den THG-Emissionen aus Mooren entspricht. Feuchtgebiete Unter der Landnutzungskategorie „Feuchtgebiete“ werden in Deutschland verschiedene Flächen zusammengefasst: Zum einen werden Moorgebiete erfasst, die vom Menschen kaum genutzt werden. Dazu gehören die wenigen, naturnahen Moorstandorte in Deutschland, aber auch mehr oder weniger stark entwässerte Moorböden (sogenannte terrestrische Feuchtgebiete). Zum anderen werden unter Feuchtgebiete auch Emissionen aus Torfabbau (on-site: ⁠ Emission ⁠ aus Torfabbauflächen; off-site: Emissionen aus produziertem und zu Gartenbauzwecken ausgebrachtem Torf) erfasst. Allein die daraus entstehenden CO 2 -Emissionen liegen bei rund 2,0 Mio. t CO 2 -Äquivalente. Im Inventar neu aufgenommen sind die Emissionen aus natürlichen und künstlichen Gewässern. Zu letzteren gehören Fischzuchtteiche und Stauseen ebenso wie Kanäle der Wasserwirtschaft. Durch diese Neuerung fließen nun Methanemissionen in das Treibhausgasinventar ein, die bislang nicht berücksichtigt wurden. Dadurch liegen nun die Netto-Gesamtemissionen der Feuchtgebiete bei 9,7 Mio. t CO 2 -Äquivalenten im Jahr 2022 und haben im Trend gegenüber dem Basisjahr 1990 um 10 % zugenommen. Diese Zunahme im Trend lässt sich auf eine zwischenzeitlich verstärkte Umwidmung von Grünland-, Wald- und Siedlungsflächen zurückführen. Nachhaltige Landnutzung und Forstwirtschaft sowie weitere Maßnahmen Im novellierten Bundes-Klimaschutzgesetz sind in § 3a Klimaziele für den ⁠ LULUCF ⁠-Sektor 2021 festgeschrieben worden. Im Jahr 2030 soll der Sektor eine Emissionsbilanz von minus 25 Mio. t ⁠ CO2 ⁠-Äquivalenten erreichen. Dieses Ziel könnte unter Berücksichtigung der aktuellen Zahlen deutlich verfehlt werden. Um dieses Ziel zu erreichen, sind ambitionierte Maßnahmen zur Emissionsminderung, dem Erhalt bestehender Kohlenstoffpools und der Ausbau von Kohlenstoffsenken notwendig. Im Koalitionsvertrag adressieren die Regierungsparteien diese Herausforderungen. Das ⁠ BMUV ⁠ hat bereits den Entwurf eines „Aktionsprogramm natürlicher Klimaschutz“ vorgelegt, das nach einer Öffentlichkeitsbeteiligung im letzten Jahr innerhalb der Regierung abgestimmt wird. Auf die Notwendigkeit für ambitionierte Klimaschutzmaßnahmen und die Bedeutung von naturbasierten Lösungen für den Klimaschutz hat das Umweltbundesamt in verschiedenen Studien (siehe hierzu Treibhausgasminderung um 70 Prozent bis 2030: So kann es gehen! ) hingewiesen Seit dem Jahr 2015 wird die Grünlanderhaltung im Rahmen der EU-Agrarpolitik über das sogenannte Greening geregelt (Verordnung 1307/2013/EU) . Das bedeutet, dass zum ein über Pflug- und Umwandlungsverbot Grünland erhalten und zum anderen aber auch durch staatliche Förderung die Grünlandextensivierung vorangetrieben werden soll. Die Förderung findet auf Bundesländerebene statt. In der Forstwirtschaft sollen Waldflächen erhalten oder sogar mit Pflanzungen heimischer Baumarten ausgeweitet und die verstärkte Holznutzung aus nachhaltiger Holzwirtschaft (siehe Charta für Holz 2.0 ) gefördert werden. Weitere Erstaufforstungen sind bereits bewährte Maßnahmen, um die Senkenwirkung des Waldes zu erhöhen. Des Weiteren werden durch das Bundesministerium für Ernährung und Landwirtschaft (⁠ BMEL ⁠) internationale Projekte zur nachhaltigen Waldwirtschaft, die auch dem deutschen Wald zu Gute kommen, zunehmend gefördert. Eine detailliertere Betrachtung dazu findet sich unter Klimaschutz in der Landwirtschaft . Die ⁠ Treibhausgas ⁠-Emissionen aus drainierten Moorflächen lassen sich verringern, indem man den Wasserstand gezielt geregelt erhöht, was zu geringeren CO 2 -Emissionen führt. Weitere Möglichkeiten liegen vor allem bei Grünland und Ackerland in der landwirtschaftlichen Nutzung nasser Moorböden, der sogenannten Paludikultur (Landwirtschaft auf nassen Böden, die den Torfkörper erhält oder zu dessen Aufbau beiträgt). Eine weitere Klimagasrelevante Maßnahme ist die Reduzierung des Torfabbaus und der Torfanwendung (siehe Moorklimaschutz ).

Reinigung im Haushalt

Weniger ist mehr: umweltfreundlich reinigen Wie Sie Ihr Zuhause umweltschonend und mit wenig Chemie reinigen Entfernen Sie Schmutz möglichst sofort. Dosieren Sie die Reinigungsmittel sparsam und verwenden Sie vorwiegend Konzentrate. Bevorzugen Sie Reinigungsmittel mit dem Blauen Engel oder dem EU-Umweltzeichen. Verzichten Sie auf Desinfektionsreiniger, chlorhaltige Sanitärreiniger, ätzende WC-Reiniger mit anorganischen Säuren und chemische Abflussreiniger. Achten Sie auf Sicherheit und bewahren Sie Reinigungsmittel außerhalb der Reichweite von Kindern auf. Gewusst wie Alle Wasch- und Reinigungsmittel belasten das Abwasser mit Chemikalien. 2021 haben in Deutschland private Verbraucher*innen etwa 1,5 Millionen Tonnen Wasch- und Reinigungsmittel gekauft. Die Stoffe aus diesen Produkten gelangen trotz Kläranlage teilweise über das Abwasser in die Umwelt. Ein nachhaltiger Einsatz schützt die Umwelt, aber auch die eigene Gesundheit. Mechanische Hilfsmittel statt Chemiekeulen: Umweltfreundlicher putzt es sich durch die Unterstützung mechanischer Hilfsmittel. Geeignete Reinigungshilfen wie Mikrofasertücher, Bürsten und Fensterabzieher erleichtern die Reinigung. Verwenden Sie mechanische Rohrreiniger wie Spirale oder Saugglocke. Ebenfalls helfen diese Tipps Reinigungsmittel einzusparen: Frischer Schmutz lässt sich leichter entfernen als eingetrockneter Schmutz. Daher den Schmutz sofort beseitigen. Angebranntes, Saucenflecken und andere Verschmutzungen am Herd und im Backofen vor der nächsten Nutzung entfernen, damit diese nicht stärker einbrennen können. Einweichen in Wasser erleichtert ebenfalls die Reinigung. Wassertropfen am Badewannenrand, an der Duschkabine und an Armaturen nach der Benutzung entfernen. Verwenden Sie für große Flächen einen Abzieher und für kleine Flächen ein Tuch – das verhindert Kalkflecken und beugt Schimmel vor. Die Dosierung ist wichtig: Halten Sie sich an die Dosieranleitung auf der Verpackung, das schont die Umwelt und verhindert Putzstreifen. Lassen Sie sich vom Preis nicht abschrecken und nutzen Sie Reinigungsmittel-Konzentrate. Sie sind zwar auf den ersten Blick teurer, aber ergiebiger als andere Reinigungsmittel. Der Blaue Engel kennzeichnet Produkte, die innerhalb ihrer Gruppe besonders umweltfreundlich sind. Quelle: Blauer Engel EU-Ecolabel: Europaweit erkennen Sie umweltfreundliche Produkte an dieser „Blume“. Quelle: Europäische Kommission Wahl des Reinigungsmittels: Es gibt Reinigungsmittel, die der Umwelt besonders stark schaden. Allzweckreiniger, Handspülmittel, Küchenreiniger/ Scheuermilch und ein saurer Sanitärreiniger auf Basis von Zitronensäure reichen völlig aus, um Küche und Bad sauber zu halten. Wählen Sie Reinigungsmittel mit dem Blauen Engel oder der EU-Umweltblume . Verzichten Sie auf Desinfektionsreiniger, chlorhaltige Sanitärreiniger, ätzende WC-Reiniger mit anorganischen Säuren und chemische Abflussreiniger. Ätzende Reiniger mit starken Säuren oder Laugen erkennen Sie am Gefahrenpiktogramm (siehe Abbildung unten) auf dem Produkt. Ein Reinigungsmittel selbst herzustellen ist kein Garant dafür, dass es umweltfreundlich oder nicht gesundheitsgefährlich ist. Beliebte Bestandteile von DIY-Reinigern wie Orangenöl oder Essigessenz sind zum Beispiel nicht zu empfehlen. Orangen(schalen)öl enthält Limonene, welches Allergien auslösen kann. Essigessenz ist ätzend und kann Armaturen und andere verchromte Teile schädigen. Hygiene in Küche und Bad: Im Alltag kommen Sie mit Keimen in Berührung. Achten Sie deshalb auf die Hygiene. Normale Verschmutzungen in Küche, Bad und WC erfordern zur Beseitigung von Keimen keine Desinfektionsmittel. Klassische Reinigungsmittel reichen hier im Normalfall aus. Vorsicht vor Keimen an den Händen: Vor der Zubereitung von Speisen und nach jedem Toilettengang sollten Sie die Hände mit Wasser und Seife gründlich waschen und abtrocknen. Hängen Sie Spülschwämme und Geschirrtücher nach dem Gebrauch umgehend zum Trocknen auf. Wechseln Sie das Spül- und Trockentuch regelmäßig und waschen Sie es bei 60 Grad Celsius. So vermeiden Sie Gesundheitsgefahren: Immer wieder kommt es zu Unfällen im Haushalt, weil Reinigungsmittel nicht als solche erkannt werden. Besonders vorsichtig sollten Sie sein, wenn Kinder in der Nähe sind. Bewahren Sie Reinigungsmittel immer außerhalb der Reichweite von Kindern auf. Vorsicht, Verwechslungsgefahr: Stellen Sie Reinigungsmittel nicht in die Nähe von Getränkeflaschen und füllen Sie sie auch nicht in Lebensmittelverpackungen um. Lesen Sie die Anwendungs- und Sicherheitshinweise auf dem Etikett vor der Anwendung. Vermeiden Sie stark saure oder stark alkalische Reiniger, da sie bei unsachgemäßer Anwendung Reizungen oder Verätzungen verursachen können. Verwenden Sie nach Möglichkeit lösemittelfreie Produkte. Falls doch organische Lösemittel im Einsatz sind, sollten Sie kräftig lüften. Verzichten Sie möglichst ganz auf den Einsatz von Raumsprays und Duftspendern. Was Sie noch tun können: Beachten Sie auch unsere Hinweise zum Gebrauch von Waschmitteln (⁠ UBA ⁠-Umwelttipps). Entkalken Sie regelmäßig die Kaffeemaschine und den Wasserkocher. Sind die Heizstäbe zunehmend verkalkt, behindert das die Wärmeabgabe an das Wasser oder das Gerät geht sogar kaputt. Beachten Sie auch unsere Hinweise zum Thema Schimmel (UBA-Publikation). Hintergrund Umweltsituation: Die in den Reinigungsmitteln enthaltenen Tenside sind vollständig biologisch abbaubar. Das gilt aber nicht für andere Inhaltsstoffe wie Phosphonate, Polycarboxylate, Konservierungsmittel, Silikone, Paraffine, Duftstoffe und Farbstoffe. Viele dieser Stoffe können sich in der Umwelt und in Organismen anreichern und Gewässerorganismen schädigen. Außerdem tragen bestimmte Inhaltstoffe, etwa Phosphor- oder Stickstoffverbindungen, zur Überdüngung der Gewässer bei. Darum sollten Reinigungsmittel möglichst frei davon sein. Der aus Wasch- und Reinigungsmitteln von privaten Haushalten resultierende Chemikalieneintrag in das Abwasser liegt bei etwa 500.000 Tonnen. Gesetzeslage: Das Wasch- und Reinigungsmittelgesetz (WRMG) vom 29. April 2007 regelt die Herstellung, die Kennzeichnung und den Vertrieb von Wasch- und Reinigungsmitteln in Deutschland. Es setzt unter anderem die Vorgaben zum biologischen Abbau von Tensiden aus der Verordnung (EG) Nr. 648/2004 in nationales Recht um. Das WRMG erfasst klassische Wasch- und Reinigungsmittel sowie zur Körperreinigung bestimmte, tensidhaltige kosmetische Mittel und auch reine Pflegemittel, welche mit der nächsten Reinigung in das Abwasser gelangen. Der Paragraf 10 des WRMG regelt die Mitteilungspflicht der Hersteller von Wasch- und Reinigungsmitteln an das Bundesinstitut für Risikobewertung (⁠ BfR ⁠). Für den Export in andere Länder sind die gesetzlichen Bestimmungen der betroffenen Länder zu beachten. Marktbeobachtung: Die Verbraucher*innen in Deutschland kaufen nach Angabe des Industrieverband Körperpflege- und Waschmittel e.V. jährlich etwa 1,5 Millionen Tonnen Wasch- und Reinigungsmittel. Nicht enthalten darin sind Reinigungsmittel, die gewerblich und industriell eingesetzt werden. Weitere Informationen finden Sie auf folgenden Seiten: Wasch- und Reinigungsmittel (⁠ UBA ⁠-Themenseite) Frühjahrsputz (Radiointerview)

Contaminants in water resources: Prioritization and recommendations for conducting a “cold” biodegradation simulation test according to OECD TG 309

The threat posed to drinking water resources by persistent and mobile substances has been recognized for decades. However, for many contaminants, some of which have been detected in drinking water resources for decades, there is still no conclusive assessment of their intrinsic biodegradability in the aquatic environment by the responsible companies. The recommendations are intended to make it easier for a wide range of users, such as water utility laboratories and government agencies with established analytical facilities, to perform a "cold" degradation test in accordance with OECD TG 309 for substances found in their own water resources.

P-Ident2 – Persistence Assessment in Surface Waters

Plant protection products, human and veterinary pharmaceuticals, biocides and other chemicals can reach surface waters during their life cycles, by direct or diffuse entry routes or because they are in completely removed during waste water treatment. These chemicals may have harmful consequences for environmental organisms and also constitute a risk for raw water contamination for drinking water production. It is therefore crucial to assess persistence of chemicals in laboratory experiments. To characterize persistence in surface waters two test guidelines are relevant: ⁠ OECD ⁠ Test Guideline 308 ("Aerobic and Anaerobic Transformation in Aquatic Sediment Systems"), which aims to derive information on biotransformation at a water-sediment interface, and OECD Test Guideline 309 ("Aerobic mineralization in surface water - Simulation biodegradation test"), which measures biotransformation in a pelagic water body. The aim of the project was to be better able to separate characterizing biotransformation from the process of sorption. For this purpose, modified test designs and alternative evaluation of kinetic data were explored. Veröffentlicht in Texte | 06/2023.

Further development of screening tests for the evaluation of potential PBT substances

Assessing the persistency of chemicals in general involves a stepwise approach. This includes cost effective and easy to conduct screening tests, that may lead to a need for more complex, lengthy and expensive tests which try to simulate conditions being more representative for the environmental compartments water, sediment and soil. The former tests lead to conclusions about the substance’s degradation potential, the latter allow to deviate degradation half-lives that can be compared with the compartment specific persistency criteria. There are no tests established yet to close the gap between screening and simulations tests. This project evaluated potential enhancements for existing screening test methods and provides suggestions for establishing a new test method for assessing the biodegradation of chemicals. Veröffentlicht in Texte | 10/2023.

1 2 3 4 5241 242 243