Das Projekt "Passive Nutzung von Solarenergie in einer Gruppe von fuenf Reihenhaeusern" wird vom Umweltbundesamt gefördert und von Domosolar AG durchgeführt. Objective: Demonstration of innovative construction of 5 row houses, opened to the South with protection to the North, heat recovery system for shower and kitchen water and application of air floor heating systems, which should reduce energy consumption compared to a conventional house by 60 per cent. The calculated annual load for space heating is approx. 8400 kWh/year. General Information: The five row houses are opened to the South, protected by plantation to the West and by an earth dam to the North. The houses have a total volume of 510 m3 and a total heated area of approx. 120 m2. The space heating demand is calculated to be 8400 kWh/year against 27500 kWh/year of a conventionally built house. This is achieved by improved insulation, direct solar gain, sun space and a heat recovery from sewage water. The middle house - South is used as an office building with four people. The use of air heating systems in the floor and a heat recovery system from warm sewage water deriving from the kitchen and bathroom is innovative for individual row houses. Solar energy is used by an attached sun space, active solar system for DHW (Domestic Hot Water) and solar air collectors with heat storage system. In order to optimise air heating systems for further applications five different systems will be built: 1. Conventional air heating (system Brink) incorporating a sun space for air-warming up, 2. Like 1, but the sun space is replaced by solar air collectors; 3. Like 2, but with a short term heat storage system, 4. Air warming-up by conventional gas fired heat generator or air collectors and room heating by a special floor heating system ; heat storage system, 5. Like 4, but with a sun space instead of air collectors. Variants 1 to 3 are operated as open systems, the warm air is transported directly into the rooms and then sent back in the warming-up system. Variants 4 and 5 use the combination of an air heating with floor heating system (a so-called air floor heating system). These two variants include also sun boilers for DHW. In the 3 first variants DHW is produced by a gas fired boiler. Achievements: The energy consumption show that the houses at the end of the terrace have a higher energy load than the middle ones, this was expected. The highest consumption is in corner house east in January (= 100 per cent) against the house used as an office (72 per cent).
Das Projekt "Windturbine fuer die Produktion von Elektrizitaet (MON 30)" wird vom Umweltbundesamt gefördert und von Messerschmitt-Bölkow-Blohm durchgeführt. Objective: MBB will construct and demonstrate one bladed 30 m diameter, 200 kW wind turbine MON 30 which will be an enlarged version of the FLAIR -8. Innovations consist of the flexible design, hubless single blade rotor, mechanical function of control and safety devices. The wind generator will produce electrical energy at the wind power plant at Wilhelmshaven. The estimated annual yield is 300 MWh. General Information: An enlarged version of FLAIR-8 but with many innovations was constructed and installed by MBB at Wilhelmshaven in FRG. The new MON 30 is a flexible design of a single bladed wind turbine with a diameter of 30 m and nominal power 200 KW. Hubless design with speed and power regulation as well as mechanical safety devices. The components of the wind turbines don t have to take up the full strain resulting from the turbulent wind but it will be compensated by the system flexibility. Even the tower is flexible being separated into a rigid and an inclined part with the turbine at the top and the counterweight at the bottom. The blade has freedom to move in flap and lead-lag direction and controls its pitch angle passively. The electrical energy production, was backed-up into the grid. The cost per KWh is estimated at 0. 21 DM while the conventional cost is 0. 28 DM. The demonstration phase will last one year and results are expected with special interest as it is a totally new design based on the soft theory design concept. It is a cooperative project of MBB and RIVA CALZONI.Objective: To install an aircraft-derivative gas turbine of 35 MW in the contractor's power plant with the necessary alterations and to operate the system continuously and at full load under industrial conditions. General Information: The energy requirement of the chemical industry is changing towards more electricity and less steam, a balance which for conventional power plants is difficult to achieve in an energy-efficient manner. This project will demonstrate that the use of aircraft-derivative gas turbines in a conventional power plant can improve the electricity output by 30 per cent while reducing the steam production. The system comprises first a gas generator which consists of 2 compressors of increasing power built in-line, a combustor and 2 turbines of decreasing power equally built in-line. This is linked to a 3-stage power turbine which drives the electricity generator. The exhaust gases of the power turbine are ducted into a heat recovery boiler for steam production. The gas generator is the critical part as the turbine. In contrast to industrial turbines, aircraft turbines are normally not used in continuous operation and at full-load during aircraft take-off. This new aircraft-derivative gas turbine will be installed in place of an existing industrial gas turbine in the power station of Dow Chemical GmbH in Stade. The financial EEC participation of 2,330,000.-DM is limited to the innovative part of the project i.e. the construction of the...
Das Projekt "Beheizung von Gebaeuden und Wasser mit der Abwaerme einer Zementfabrik" wird vom Umweltbundesamt gefördert und von INTERATOM durchgeführt. Objective: Partial utilization of rotary kiln jacket waste heat to heat buildings and water for industrial use, by way of a radiation absorber. Concurrently a measuring programme is to take place for the long term evaluation of the following: - availability; - operating behaviour; - influencing kiln jacket temperature; - real energy saving costs; - operating costs; - commercial efficiency. Annual heating oil saving of +-130,000 litres is anticipated. General Information: Absorber design is to the following specifications: - heat transfer surface 103 m2; - length 6 m; - power at 370 deg C jacket; - temperature 650 kW; - power at 300 deg C jacket; - temperature 400 kW. The absorber is comprised of 12 single, level heat exchanger thermo plates. The plates are coated with black absorbent lacquer on the kiln side and equipped with weather-proof thermal insulation on the rear. The absorber plates, mounted on 2 swivel steel constructions, form two heptagonal half-shells completely enclosing the kiln over a length of 6 m at a distance of 0,5 m. The absorber loop absorbs heat from the radiation absorber, transferring it to hydraulically decoupled heating loops via three intermediate heat exchangers. A glycol-water mixture acts as heat transfer medium in the absorber loop. If less heat is required inlet temperature is limited by a 3-way valve whereby heat surplus to requirements is discharged to the cooling loop. In normal circumstances the absorber provides 100 per cent of the heat supply. The intermediate heat exchanger is by-passed at temperatures below 60 deg. C. In the event of heating loop failure the cooling loop acts as emergency cooling system and is designed for removal of total absorber output. Achievements: Acceptance tests were performed on the radiation absorber for different inlet temperatures of the heat transfer medium into the absorber, and for different absorber positions. Relevant input data for the absorber were inlet and outlet temperatures at the absorber, and its throughput. At a measuring cycle of two measures/min. power was recorded. The average hourly power was automatically printed. Kiln temperature was measured in the vicinity of the absorber at initially three, then five and in most cases seven almost equidistant positions. Kiln shell temperature was between 256 deg.C and 369 deg.C; absorber power, at different positions and inlet temperatures, was between 121 kW and 401 kW. The fact that the anticipated power of 600 kW was not achieved is due primarily to the inadequate tightness of the absorber system, in particular at the lower and upper 12 cm gap between the half shells. A vertical flow velocity of 2 m/s was measured there with an anemometer. With heat transfer coefficients of 6.4W/m2K for the kiln and 5.7W/m2K for the absorber for free connective flow, a convection loss of 180 kW results for the kiln and of 40 kW for the absorber. This is a total of 220 kW. 50 per cent of this can certainly be used with adequate ...
Das Projekt "Coal gasification - waste heat utilization - phase 2 stage 2 -" wird vom Umweltbundesamt gefördert und von Krupp Koppers durchgeführt. Objective: The aim of the project is the energetic optimisation of the PRENLO-process for the gasification of solid fuels under pressure by development and testing of a new waste heat boiler system. The engineering and construction of a PRENFLO-plant (Pressurized Entrained flow Coal Gasification) with a capacity of 48 t/d Coal throughput at design pressure (Contract LG/018/83/DE) and the execution of the subsequent test programme (Phase 2 of the project; LG/270/85/DE and the present contract, LG/354/87/DE) served to justify the technical and economic risks of commercializing the process on a large industrial scale and demonstrate the long-term availability of the system and of newly developed components. General Information: The PRENFLO process is based on the atmospheric Koppers-Totzek process. This new technology is characterized by high gasifier unit capacity, high thermal efficiency, independence of coal quality, high gas quality and low environmental impact. To demonstrate the PRENFLO process and to test as well as optimize the components of the system a 48 t/d PRENFLO plant was erected on the site of the technology centre of the Saarbergwerke AG in Forstenhausen (Saarland, Germany), project LG/018/83/DE. PRENFLO gasification operates according to the entrained flow principle. Coal dust with a grain size of smaller than100 m is conveyed under pressure, using nitrogen, to a reactor with a water-cooled refractory lining. The gasification agents oxygen and steam are added at the gasifier burners. The gasification of the coal dust, i.e. reactor with a water-cooled refractory lining. The gasification agents oxygen and steam are added at the gasifier burners. The gasification of the coal dust, i.e. the partial oxidation of the carbon to carbon monoxide, takes place in a flame reaction at temperatures of more than 2000 deg. C and a pressure of 24 to 30 bar, the coal substance being converted into CO, H2 and small amounts of CO2. The sulphur content in the coal is converted into H2S and to a limited extent COS, the chlorine into HCl. Coal ash flows as liquid slag out of the gasifier into a water bath and is discharged from there as granulated inert high-temperature slag. Some of the coal ash is removed from the reactor as fly ash together with the raw gas. The raw gas leaves the reactor from the top and is normally quenched with cole and cleaned recycle gas in order to solidify discharged liquid ash particles. The raw gas is further cooled in the waste heat boiler. High pressure steam generation is coupled with the cooling system of the reactor. The steam produced in both systems is passed to super heaters. The downstream raw gas cleaning system comprises a dry dedusting unit, Venturi scrubber, a high-pressure separator and a scrubbing water circulation system with a pressure filter for separation of filter cake and a stripper for waste water purification. In the present programme (LG/255/89/DE) the raw gas leaving the PRENFLO reactor is not
Das Projekt "Coal gasification - waste heat utilization" wird vom Umweltbundesamt gefördert und von Krupp Koppers durchgeführt. Objective: Development and test operation of a new waste utilization system (radiation boiler) and of further new components for pressurized entrained flow gasification (PRENFLO). The new components besides the radiation boiler were a candle filter (dry dedusting of PRENFLO raw gas), a fly ash recycle system, a catalytic COS hydrolysis and a raw gas desulfurization system (MDEA process). General Information: The partial oxidation of solid fuels according to the entrained-flow principle (PRENFLO process) is an exothermic process, approx. 20 per cent of the gross calorific value of the fuel being converted into sensible heat. Utilization of this large quantity of heat released is indispensible for the energetically optimum of the PRENFLO process in industrial-scale applications. The raw gas leaves the gasifier at a temperature of approx. 1400 deg. C, highly laden - about 160 g/m3 (24 bar) with small molten or doughy ash particles. The heat utilization concept realized to date at Krupp Koppers comprises the cooling of raw gas at the outlet of the gasifier with quench gas to temperatures of less than 1000 deg. C resulting in higher heat losses at temperatures below 250 deg. C. The hot gas quenching can be avoided by using the new waste heat utilization system for dust-laden PRENFLO raw gas with high optical density. It is based on a radiation boiler with built-in heat exchange elements, the arrangement of which takes account of the temperature and flow profile of the hot raw gas leaving the reactor. Results from the operation of a 48 t/d PRENFLO plant with regard to slag separation in the gasifier, effectiveness of mechanical dedusting devices, decoupling of radiation boiler from gasifier to take account of the vibrational properties (mechanical cleaning device for heat exchangers), and theoretical investigations on heat exchange for optically dense fluids indicated the possibilities of preventing energy losses by quench gas cooling of raw gas. Optimization of the system with regard to the spacing of the heat exchange elements, the cleaning and the geometry of the system result in lower overall height and anticipate efficiency improvements if the system is applied in a CC-power plant. The dry dedusting of PRENFLO gas allows fly ash recycling to the gasifier, thereby a total slagging of the coal ash and a total carbon conversion can be achieved. A high effective filtering system reduces heat losses with the raw gas, when hot dedusted gas from the filter is recycled as quench gas. A candle filter and a pneumatic fly ash recycle system was planned, built and tested. For the desulfurization of the PRENFLO gas a catalytic COS hydrolysis (conversion of COS to H2S) and a H2S absorber (MDEA process) were installed in the test plant to proof the reliability of these process stages for PRENFLO gas in a wide range of operating conditions and to take account of the gas and solid traces in the gas to be treated. Testing and optimization of the waste heat...
Das Projekt "Fortgeschrittener Waermetauscher zur Beheizung von Gebaeuden" wird vom Umweltbundesamt gefördert und von Otten GmbH durchgeführt. Modern housing construction still shows a lack of energy efficiency. A number of measures will show together an improvement of at least 44 percent. However, the needed investments are not always cost-effective. This is the reason, that for example real estate developers and housing associations still reduce investments to a minimum amount. The investments are most often restricted to roof-isolation, high efficiency central heating boilers or high efficiency windows. However, a very easy, cheap and straightforward method to save energy, is by recovering the heat out of the waste gas of both the central heating boiler as the waste gas of the house as well again for in-house heating. The result of this project will be a straightforward, highly innovative instrument that will improve the quality of in-home living combined with the efficient use of natural resources. The proposed instrument will be highly reliable, cost effective, safe and environmentally friendly. This multidisciplinary project combines physics, electronics, computer calculating, mechanical engineering, materials engineering and production techniques.
Origin | Count |
---|---|
Bund | 6 |
Type | Count |
---|---|
Förderprogramm | 6 |
License | Count |
---|---|
open | 6 |
Language | Count |
---|---|
Deutsch | 6 |
Englisch | 6 |
Resource type | Count |
---|---|
Keine | 6 |
Topic | Count |
---|---|
Boden | 6 |
Lebewesen & Lebensräume | 5 |
Luft | 6 |
Mensch & Umwelt | 6 |
Wasser | 6 |
Weitere | 6 |