Standorte von Anlagen für Produktion und Energieumwandlung, an denen Potenziale für Abwärmenutzung bestehen. Die Darstellung erhebt keinen Anspruch auf Vollständigkeit! Weitere Anbieter von Abwärme können jederzeit in diese Darstellung aufgenommen werden.
Geld vom Staat für den schnellen Ausstieg Das Umweltbundesamt rät dazu, das Kältemittel R 22 schnell durch klimafreundliche Alternativen zu ersetzen. Der teilhalogenierte Fluorchlorkohlenwasserstoff (HFCKW) kommt immer noch in Fleischereien, Großküchen, in der Raumklimatisierung oder in Supermärkten als Kältemittel zum Einsatz. Obwohl das Mittel die Ozonschicht schädigt, wenn es entweicht, kühlt noch jeder fünfte Supermarkt in Deutschland mit R 22. Die Europäische Union hat die Produktion von R 22 ab dem 1. Januar 2010 verboten, aber eine Übergangsfrist bis 2015 vorgesehen, in der Nutzerinnen und Nutzer recyceltes R 22 weiter einsetzen dürfen. Jochen Flasbarth, Präsident des Umweltbundesamtes, rät aber schon jetzt dazu, von R 22 Abstand zu nehmen: „Nutzerinnen und Nutzer sollten ihre Kühlanlagen schnell auf klimafreundliche Kältemittel wie Kohlendioxid umstellen. Dafür gibt es sogar Fördermittel aus dem Klimaschutzprogramm der Bundesregierung.” Der Umstieg lohnt sich auch aus anderem Grund: Wegen des Produktionsverbots erwartet das UBA noch weit vor dem Jahr 2015 Engpässe beim Nachfüllen alter Anlagen mit R 22. Jährlich werden rund 1.000 Tonnen HFCKW benötigt, um durch Lecks entwichene Kältemittel in Kälteanlagen aufzufüllen. Experten des Umweltbundesamtes gehen davon aus, dass nach dem Produktionsverbot am 1. Januar 2010 nur noch rund 10 bis 15 Prozent des dazu benötigten R 22 auf dem Markt verfügbar sein werden. Wer eine alte Anlage nicht schnell genug umrüstet, hat so das Nachsehen. Beim schnellen Ausstieg aus R 22 sollte folgendes beachtet werden: Da Kälteanlagen 10 oder mehr Jahre halten, ist die Umrüstung alter R22-Anlagen auf ein neues Kältemittel meist nicht die optimale Lösung. Besser ist der Neubau einer modernen und optimierten Anlage. Diese ist in der Regel energieeffizienter und so auf Dauer wirtschaftlicher. Als Ersatz für R 22 sollten möglichst natürliche, halogenfreie Kältemittel wie Kohlenstoffdioxid (R 744) verwendet werden. Bei gewerblichen Anlagen fördert das Klimaschutz -Impulsprogramm des Bundesumweltministeriums den Umstieg mit bis zu 25 Prozent der Nettoinvestitionskosten. Werden zusätzliche Maßnahmen zum Klimaschutz wie z.B. die Nutzung von Abwärme durchgeführt, können diese noch einmal mit bis zu 35 % der Nettoinvestitionskosten gefördert werden. Geld für Neuanlagen gibt es aber nur, wenn innovative, energiesparende Techniken eingesetzt und natürliche Kältemittel benutzt werden.
Kühlen und Klimatisieren gehören heute zum alltäglichen Leben. Keiner möchte auf gekühlte Lebensmittel oder klimatisierte Büros verzichten. Ohne Kältemittel geht das vielfach nicht. Allerdings können bei geeigneten Randbedingungen auch Verfahren ohne Kältemittel zum Abführen von Wärme eingesetzt werden, wie das Kühlen mit einem Kühlturm, mit Grundwasser, mit freier Kühlung oder durch Abwärmenutzung. Alle Verfahren zum Abführen von Wärme sollten energieeffizient und umweltschonend sein. Werden Kältemittel verwendet, so ist die Wahl des Kältemittels von erheblicher Bedeutung für die Energieeffizienz und Umweltverträglichkeit. Neben den natürlichen Kältemitteln wie Kohlenwasserstoffen, Ammoniak (NH 3 ) und Kohlendioxid (CO 2 ) gibt es noch immer klimaschädliche Kältemittel. Letztere werden in über 95% aller bestehenden Kälteanlagen verwendet. Veröffentlicht in Broschüren.
Gemeinsame Pressemitteilung von Umweltbundesamt und Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit Das Berufsschulzentrum in Mühldorf am Inn gewinnt den Bundespreis UMWELT & BAUEN 2021 für sein innovatives Energiekonzept. Das Gebäude erzeugt mehr Energie als es verbraucht und speichert überschüssige Abwärme in einem Eisspeicher. Weiterhin wurden vier Projekte mit Anerkennungen ausgezeichnet, darunter zwei in der neu geschaffenen Kategorie „Klimagerechte Sanierung“. Verliehen wurde der Preis am 7. September 2021 gemeinsam von Bundesumweltministerium (BMU) und Umweltbundesamt (UBA). Dem Bausektor kommt eine Schlüsselrolle beim Klimaschutz zu, denn Gebäude verbrauchen enorme Ressourcen beim Bau und im Betrieb. Allein in Deutschland sind Wärme, Kühlung und Beleuchtung der Gebäude verantwortlich für ein Viertel der jährlichen energiebedingten Treibhausgasemissionen. Von den Treibhausgasemissionen, die Gebäude insgesamt jährlich verursachen, entfallen drei Viertel auf die Nutzung der Gebäude, aber auch ein Viertel auf ihre Errichtung. Mit dem 2020 ins Leben gerufenen Bundespreis UMWELT & BAUEN sollen daher Leuchtturmprojekte nachhaltigen Bauens ausgezeichnet werden, die zeigen, wie zukunftsfähiges Bauen, gerade auch im Bestand, schon heute realisiert werden kann. Parlamentarischer Staatssekretär Florian Pronold: „Nicht zuletzt durch die jüngsten Hochwasserereignisse ist die Diskussion um Klima -, Umwelt- und Gesundheitsauswirkungen von Gebäuden und deren Bau in der Mitte der Gesellschaft angekommen. Besonders die energetische Sanierung von Bestandsbauten bleibt eine tägliche Herausforderung für die privaten und öffentlichen Bauherren. Aus Sicht des Klimaschutzes besteht dort der größte Handlungsbedarf. Themen wie Primärenergiebedarf, graue Energie oder gesundes Bauen sind nicht länger nur Expertinnen und Experten ein Begriff, sondern finden auch bei immer mehr privaten und öffentlichen Bauherrinnen und Bauherren Beachtung. Und das zu Recht – denn der Bausektor verbraucht enorme Rohstoff- und Energieressourcen. Der Gebäudebereich ist deshalb der Schlüsselsektor, um Klimaneutralität zu erreichen. Und nachhaltiges Bauen und Sanieren sind nicht nur für den Klimaschutz, sondern auch für den sozialen Zusammenhalt in Deutschland von enormer Bedeutung.“ Dirk Messner, Präsident des Umweltbundesamts: „Extremwetterereignisse wie die Hochwasserkatastrophe im Westen Deutschlands führen uns vor Augen, welche Auswirkungen eine ungebremste Klimaerwärmung haben wird. Baustoffen kommt im Kampf gegen den Klimawandel eine wichtige Bedeutung zu: So sind Baustoffe wie Stahl- und Beton energie- und ressourcenintensiv in ihrer Herstellung und heizen so das Erdklima an. Wir brauchen also eine Baustoffwende hin zur Klimaneutralität. Ich freue mich daher, dass die Jury mit dem Berufsschulzentrum in Mühldorf am Inn einen Preisträger ausgewählt hat, der, neben seinem hervorragenden Energiekonzept, bei der Wahl der Baustoffe auf einen Mix aus Holz und Beton mit Rezyklatanteil setzt. Mit dem Bundespreis UMWELT & BAUEN ist es unser Anliegen, ganzheitlich hervorragenden Projekten mehr Sichtbarkeit zu verschaffen und zur Nachahmung einzuladen.“ Staatssekretär Pronold und UBA -Präsident Professor Messner verliehen in den vier Wettbewerbskategorien einen Bundespreis und vier Anerkennungen, jeweils gekürt von einer unabhängigen Jury. Die Preisverleihung endete mit einem Zukunftsdialog, an dem neben Staatssekretär Pronold und dem UBA-Präsidenten, die Co-Vorsitzende der Jury Frau Professor Christa Reicher und Frau Susanne Wartzeck, Präsidentin des Bundes Deutscher Architektinnen und Architekten, teilnahmen. Die Teilnehmenden betonten, dass vor allem der Bestand zu erhalten und weiterzuentwickeln ist, um schnellstmöglich die CO2 -Emissionen aus dem Betrieb auf nahe null zu reduzieren und die Anpassung an den Klimawandel umzusetzen. Die Projekte und die Preisverleihung sind im Internet nachzusehen: https://www.umweltbundesamt.de/bundespreis-umwelt-bauen-start In der Kategorie Nichtwohngebäude wurde der Ergänzungsbau des Berufsschulzentrums in Mühldorf am Inn der ARGE Schmuck‐Anglhuber Architekten mit dem Bundespreis UMWELT & BAUEN 2021 ausgezeichnet. Das Schulzentrum, welches für 1.400 Schüler*innen sowie 100 Lehrer*innen Lehrräume und Fachklassen wie Bäckerei, Kühlräumen und Großküchentechnik zur Verfügung stellt, zeichnet sich durch ein innovatives Energiekonzept aus. So erzeugt das Gebäude, auch unter Berücksichtigung des Nutzerstromes, mehr Energie als es verbraucht. Ein Wärmepumpenkonzept mit Eisspeicher verbindet effiziente Heizung und Kühlung mit der Nutzung von Abwärme, beispielsweise aus der Bäckerei. Durch das ausgefeilte Lüftungssystem ist ein Präsenzunterricht auch unter Pandemie-Bedingungen möglich. Neben dem Hauptpreisträger wurden weitere vier Projekte mit Anerkennungen ausgezeichnet, darunter zwei in der neu geschaffenen Kategorie Klimagerechte Sanierung: Für den Bundespreis UMWELT & BAUEN 2021 sind insgesamt 29 Bewerbungen im Projektbüro der Ökozentrum NRW GmbH eingegangen. Die ausgezeichneten Projekte wurden unter Leitung von Frau Professor Dr. Reicher durch eine zwölfköpfige Jury bestehend aus Architektinnen und Architekten , Expertinnen und Experten des nachhaltigen Bauens aber auch Institutionen wie dem Deutschen Mieterbund e.V. und den kommunalen Spitzenverbänden gekürt. Ausschnitte der Preisverleihung, wie die Key-Note von Susanne Wartzeck (Präsidentin BDA) werden in Kürze auf der Website des Bundespreises UMWELT & BAUEN verfügbar sein. Weiterhin werden alle ausgezeichneten Projekte in einem Buch vorgestellt, das ab November 2021 im UBA erhältlich sein wird.
Mehr Geld für Spitzentechnologie in der Abwasserbehandlung Bei der Abwasserbehandlung lassen sich nach einer Studie des Umweltbundesamtes (UBA) große Mengen an Kohlendioxid einsparen. Durch Energieeffizienz-Maßnahmen sowie durch verbesserte Eigenenergieerzeugung lässt sich der Kohlendioxid-Ausstoß der Abwasserbehandlung in Deutschland um bis zu 40 Prozent senken. „Mit moderner Umwelttechnik können Abwasserbehandlungsanlagen einen wichtigen Beitrag zum Klimaschutz leisten. Höhere Energieeffizienz und eine stärkere Nutzung von Klärgasen sind die Schlüssel für eine klimaverträgliche Abwassertechnologie“, erklärte UBA-Präsident Jochen Flasbarth. Abwasserbehandlungsanlagen sind für 20 Prozent des Energiebedarfs in deutschen Städten und Gemeinden verantwortlich. Sie benötigen fast 4.400 Gigawattstunden (GWh/a) Strom pro Jahr und sind damit der größte Einzelenergieverbraucher vor Schulen, Krankenhäusern und anderen kommunalen Einrichtungen. Anders ausgedrückt: Die Jahresleistung eines modernen Kohlekraftwerks wird nur für das Betreiben von Abwasserbehandlungsanlagen benötigt. Pro Jahr entstehen so rund drei Millionen Tonnen des Klimagases Kohlendioxid. Dieser Energiebedarf lässt sich um über 20 Prozent senken. Darüber hinaus kann die Eigenenergieerzeugung der Abwasseranlagen im Betrieb verdoppelt bis vervierfacht werden. Damit könnten etwa 900 GWh Strom pro Jahr eingespart und somit rund 600.000 Tonnen Kohlendioxid-Emissionen vermieden werden. Zu diesem Ergebnis kommt die Studie „Steigerung der Energieeffizienz auf kommunalen Kläranlagen“ die im Auftrag des UBA erstellt wurde. Die Studie untersucht die Wechselwirkungen von Energieoptimierung und Anlagenbetrieb und zeigt geeignete Ansatzpunkte zur Energieeffizienzsteigerung auf. Dabei vergleicht sie etablierte Verfahren mit neuer Technik und beschreibt vielversprechende Ansatzpunkte für eine energetische Optimierung besonders bei der Belüftung des Abwassers und bei der Behandlung des Klärschlamms. Zudem weist sie nach: Auch die Energiegewinnung ist für einen energieeffizienten Betrieb der Kläranlagen bedeutend. „Gelingt es, Klärgas besser zu gewinnen und zu verwerten, ließe sich die Stromerzeugung durch kommunale Kläranlagen nahezu verdoppeln. Auch dadurch ließen sich rund 600.000 Tonnen Kohlendioxid pro Jahr einsparen“, so Jochen Flasbarth. Der neue Förderschwerpunkt „Energieeffiziente Abwasseranlagen“ bereichert das Umweltinnovationsprogramm des Bundesumweltministeriums. Gefördert werden innovative Konzepte zur Energieoptimierung und zum Ressourcenschutz in der Abwasserbehandlung. Das fängt an beim Abwassertransport in der Kanalisation und geht über die Behandlung des Abwassers bis hin zur Einleitung in die Gewässer. Weitere Aspekte sind die Abwärmenutzung im Kanalnetz, die Stromeinsparung und Energieerzeugung in Kläranlagen, die Erhöhung der Energieeffizienz sowie die Rückgewinnung von Rohstoffen aus dem Abwasser und dem Klärschlamm.
Die Georg Fischer Automobilguss GmbH Singen verwendet eine Heißwind-Kupolofenanlage mit Koks als Brennstoff zum Schmelzen und Aufkohlen von Metall. Ein Rekuperator erzeugt den nötigen Heißwind von 600°C, der dann mehrere Schichten Metall und Koks mit Hilfe von eingeblasener Luft im Kupolofen bei rund 2000°C zum Schmelzen bringt. Die im Abgas vorhandenen Schadstoffe werden anschließend verbrannt. Die Abgastemperatur steigt auf bis zu 1200°C an. Dadurch fällt eine erhebliche Wärmemenge im Abgas an, die bislang nur in der Heizperiode und auch dann nur zu einem geringen Teil im Unternehmen genutzt wurde. Mit dem bisherigen Rekuperaturkonzept konnten bis zu 13 MW zurückgewonnen werden. Für den Heißwind wurden ca. 7 MW und für eigene Heizzwecke ca. 6 MW benötigt.
Mit Sinteranlage, Hochofen, Oxygenstahlwerk, Stranggießanlage und Warmwalzwerk wurden in dem vorliegenden Projekt fünf Hauptanlagen integrierter Hüttenwerke im Hinblick auf Abwärme und deren Nutzungsmöglichkeiten untersucht. Unterstützt durch Interviews mit den Anlagenbetreibern der Hüttenwerke und einem Anlagenbauer wurden die Abwärmepotenziale der Einzelanlagen detailliert analysiert und aufgeschlüsselt dargestellt. Ferner wurden Hemmnisse identifiziert, die einer möglichen Abwärmenutzung entgegenstehen. Über die bereits genutzte Abwärme hinaus wurde ein zusätzlich betrieblich nutzbares Abwärmepotenzial von 0,322 Gigajoule pro Tonne Rohstahl (fest) ermittelt – hochgerechnet etwa 9,45 Petajoule pro Jahr. Veröffentlicht in Texte | 07/2019.
Feinblech aus Kaltwalzwerken: Der flüssige Rohstahl aus dem Blasstahlwerk wird im Strangguß zu Brammen und weiter in einem Warmwalzwerk zu Blech gerollt. Das Feinblech wird anschließend in einem Kaltwalzwerk gefertigt. Die Daten gelten für Westeuropa, 1990. Allokation: keine. Walzzunder, Reste werden in den Blasstahlkonverter zurückgeführt. Genese der Daten: Für die Fertigung von Feinblech liegen unterschiedliche Angaben vor. Sie sind in der Tabelle gegenübergestellt. Einheit Strangguß Warmwalzwerk Kaltwalzwerk Summe Habersatter Materilabilanza Verlust - % 2,83 2,91 3,41 9,438 Energiebilanzb MJtherm /MJel 143 / 101 1460c / 302 1700 / 720 3360 / 1140 Worrell Materilabilanza Verlust - % k.A. k.A. k.A. k.A. Energiebilanzb MJtherm /MJel 20 / 40 1820 / 370 900 / 530 2740 / 940 a Verluste beziehen sich auf den Output des Prozeßschrittes. b Energieangaben beziehen sich auf 1 t Output des Prozesses. c incl. Energiegutschrift für Abwärmenutzung von 420 MJ/t. Die Stoffbilanz wurde aus #1 entnommen. Insgesamt ergibt sich ein interner Schrottanfall von ca 9,4%, der in die Rohstahlherstellung rückgeführt wird. Betrachtet man hingegen die Schrottbilanz der Stahlindustrie (Stahl 1992) mit einem Eigenentfall von 4,06 Mill. t bei einer Rohstahlproduktion von 38,4 Mill t, so kommt man auf einen durchschnittlichen Schrottanfall von 10,6 % bezogen auf das Rohstahlgewicht (nach Habersatter 8,8 %). Unterstellt man für die Produktion von Feinblech die meisten Prozeßstufen mit den höchsten Anfall von Schrott, so verbleibt eine Differenz zwischen beiden Angaben. Der Energieverbrauch wurde #3 entnommen. Danach beträgt der Brennstoffbedarf 2,74 GJ/t und der Strombedarf 0,94 GJel/t. Es wird angenommen, daß der Brennstoff zu 100% aus Gas (Kokereigas, Gichtgas, Erdgas) bereitgestellt wird, wobei als Brenngas Erdgas angenommen wird. #1 setzt in der Bilanz sowohl einen höheren Brennstoffbedarf (ca. 3,4 GJ/t) als auch einen höheren Strombedarf an (1,14 GJ/t). Vergleicht kan die Summe aus den Energieeinsatz von den Teilprozessen Strangguß und Warmwalzwerk, so sind die Differenzen beider Bilanzen gering (z.B. Strom 410 / 403 ). Sehr große Differenzen bestehen für das Kaltwalzen. Es kann durch unterschiedliche Anforderungen an das Feinblech (Dicke) erklärt werden. Der Datensatz von Worrell scheint für allgemeine Betrachtungen repräsentativer zu sein als die spezifische Anwendung für Weißblechdosen. Als Betriebsmittel wird von Habersatter nur Walzöl (8kg/t) angegeben. Einzige prozeßbedingte gasförmige Emission stellt die Emission an Walzöl in Höhe von 0,8 kg/t dar (#1). Als Wasserbedarf werden 20 m3/t nach #2 angenommen. Als Emission über den Wasserpfad entstehen 0,5 kg Walzöl /t (#1). Unter der Annahme, daß es sich um aliphatische Öle handelt, wird ein CSB von 1,7 kg / t RE errechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Metalle - Eisen/Stahl gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 91,5% Produkt: Metalle - Eisen/Stahl
Feinblech aus Kaltwalzwerken: Der flüssige Rohstahl aus dem Blasstahlwerk wird im Strangguß zu Brammen und weiter in einem Warmwalzwerk zu Blech gerollt. Das Feinblech wird anschließend in einem Kaltwalzwerk gefertigt. Die Daten gelten für Westeuropa, 1990. Allokation: keine. Walzzunder, Reste werden in den Blasstahlkonverter zurückgeführt. Genese der Daten: Für die Fertigung von Feinblech liegen unterschiedliche Angaben vor. Sie sind in der Tabelle gegenübergestellt. Einheit Strangguß Warmwalzwerk Kaltwalzwerk Summe Habersatter Materilabilanza Verlust - % 2,83 2,91 3,41 9,438 Energiebilanzb MJtherm /MJel 143 / 101 1460c / 302 1700 / 720 3360 / 1140 Worrell Materilabilanza Verlust - % k.A. k.A. k.A. k.A. Energiebilanzb MJtherm /MJel 20 / 40 1820 / 370 900 / 530 2740 / 940 a Verluste beziehen sich auf den Output des Prozeßschrittes. b Energieangaben beziehen sich auf 1 t Output des Prozesses. c incl. Energiegutschrift für Abwärmenutzung von 420 MJ/t. Die Stoffbilanz wurde aus #1 entnommen. Insgesamt ergibt sich ein interner Schrottanfall von ca 9,4%, der in die Rohstahlherstellung rückgeführt wird. Betrachtet man hingegen die Schrottbilanz der Stahlindustrie (Stahl 1992) mit einem Eigenentfall von 4,06 Mill. t bei einer Rohstahlproduktion von 38,4 Mill t, so kommt man auf einen durchschnittlichen Schrottanfall von 10,6 % bezogen auf das Rohstahlgewicht (nach Habersatter 8,8 %). Unterstellt man für die Produktion von Feinblech die meisten Prozeßstufen mit den höchsten Anfall von Schrott, so verbleibt eine Differenz zwischen beiden Angaben. Der Energieverbrauch wurde #3 entnommen. Danach beträgt der Brennstoffbedarf 2,74 GJ/t und der Strombedarf 0,94 GJel/t. Es wird angenommen, daß der Brennstoff zu 100% aus Gas (Kokereigas, Gichtgas, Erdgas) bereitgestellt wird, wobei als Brenngas Erdgas angenommen wird. #1 setzt in der Bilanz sowohl einen höheren Brennstoffbedarf (ca. 3,4 GJ/t) als auch einen höheren Strombedarf an (1,14 GJ/t). Vergleicht kan die Summe aus den Energieeinsatz von den Teilprozessen Strangguß und Warmwalzwerk, so sind die Differenzen beider Bilanzen gering (z.B. Strom 410 / 403 ). Sehr große Differenzen bestehen für das Kaltwalzen. Es kann durch unterschiedliche Anforderungen an das Feinblech (Dicke) erklärt werden. Der Datensatz von Worrell scheint für allgemeine Betrachtungen repräsentativer zu sein als die spezifische Anwendung für Weißblechdosen. Als Betriebsmittel wird von Habersatter nur Walzöl (8kg/t) angegeben. Einzige prozeßbedingte gasförmige Emission stellt die Emission an Walzöl in Höhe von 0,8 kg/t dar (#1). Als Wasserbedarf werden 20 m3/t nach #2 angenommen. Als Emission über den Wasserpfad entstehen 0,5 kg Walzöl /t (#1). Unter der Annahme, daß es sich um aliphatische Öle handelt, wird ein CSB von 1,7 kg / t RE errechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Metalle - Eisen/Stahl gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 91,5% Produkt: Metalle - Eisen/Stahl
Feinblech aus Kaltwalzwerken: Der flüssige Rohstahl aus dem Blasstahlwerk wird im Strangguß zu Brammen und weiter in einem Warmwalzwerk zu Blech gerollt. Das Feinblech wird anschließend in einem Kaltwalzwerk gefertigt. Die Daten gelten für Westeuropa, 1990. Allokation: keine. Walzzunder, Reste werden in den Blasstahlkonverter zurückgeführt. Genese der Daten: Für die Fertigung von Feinblech liegen unterschiedliche Angaben vor. Sie sind in der Tabelle gegenübergestellt. Einheit Strangguß Warmwalzwerk Kaltwalzwerk Summe Habersatter Materilabilanza Verlust - % 2,83 2,91 3,41 9,438 Energiebilanzb MJtherm /MJel 143 / 101 1460c / 302 1700 / 720 3360 / 1140 Worrell Materilabilanza Verlust - % k.A. k.A. k.A. k.A. Energiebilanzb MJtherm /MJel 20 / 40 1820 / 370 900 / 530 2740 / 940 a Verluste beziehen sich auf den Output des Prozeßschrittes. b Energieangaben beziehen sich auf 1 t Output des Prozesses. c incl. Energiegutschrift für Abwärmenutzung von 420 MJ/t. Die Stoffbilanz wurde aus #1 entnommen. Insgesamt ergibt sich ein interner Schrottanfall von ca 9,4%, der in die Rohstahlherstellung rückgeführt wird. Betrachtet man hingegen die Schrottbilanz der Stahlindustrie (Stahl 1992) mit einem Eigenentfall von 4,06 Mill. t bei einer Rohstahlproduktion von 38,4 Mill t, so kommt man auf einen durchschnittlichen Schrottanfall von 10,6 % bezogen auf das Rohstahlgewicht (nach Habersatter 8,8 %). Unterstellt man für die Produktion von Feinblech die meisten Prozeßstufen mit den höchsten Anfall von Schrott, so verbleibt eine Differenz zwischen beiden Angaben. Der Energieverbrauch wurde #3 entnommen. Danach beträgt der Brennstoffbedarf 2,74 GJ/t und der Strombedarf 0,94 GJel/t. Es wird angenommen, daß der Brennstoff zu 100% aus Gas (Kokereigas, Gichtgas, Erdgas) bereitgestellt wird, wobei als Brenngas Erdgas angenommen wird. #1 setzt in der Bilanz sowohl einen höheren Brennstoffbedarf (ca. 3,4 GJ/t) als auch einen höheren Strombedarf an (1,14 GJ/t). Vergleicht kan die Summe aus den Energieeinsatz von den Teilprozessen Strangguß und Warmwalzwerk, so sind die Differenzen beider Bilanzen gering (z.B. Strom 410 / 403 ). Sehr große Differenzen bestehen für das Kaltwalzen. Es kann durch unterschiedliche Anforderungen an das Feinblech (Dicke) erklärt werden. Der Datensatz von Worrell scheint für allgemeine Betrachtungen repräsentativer zu sein als die spezifische Anwendung für Weißblechdosen. Als Betriebsmittel wird von Habersatter nur Walzöl (8kg/t) angegeben. Einzige prozeßbedingte gasförmige Emission stellt die Emission an Walzöl in Höhe von 0,8 kg/t dar (#1). Als Wasserbedarf werden 20 m3/t nach #2 angenommen. Als Emission über den Wasserpfad entstehen 0,5 kg Walzöl /t (#1). Unter der Annahme, daß es sich um aliphatische Öle handelt, wird ein CSB von 1,7 kg / t RE errechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Metalle - Eisen/Stahl gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 91,5% Produkt: Metalle - Eisen/Stahl
Origin | Count |
---|---|
Bund | 1482 |
Land | 30 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 1414 |
Text | 74 |
Umweltprüfung | 2 |
unbekannt | 19 |
License | Count |
---|---|
closed | 74 |
open | 1396 |
unknown | 40 |
Language | Count |
---|---|
Deutsch | 1510 |
Englisch | 164 |
Resource type | Count |
---|---|
Archiv | 34 |
Datei | 35 |
Dokument | 72 |
Keine | 933 |
Unbekannt | 1 |
Webdienst | 3 |
Webseite | 509 |
Topic | Count |
---|---|
Boden | 1079 |
Lebewesen & Lebensräume | 964 |
Luft | 881 |
Mensch & Umwelt | 1510 |
Wasser | 836 |
Weitere | 1477 |