Die Roche-Gruppe mit Hauptsitz in Basel, Schweiz, betreibt am Standort im oberbayrischen Penzberg auf einer Fläche von 590.000 Quadratmetern (83 Fußballfeldern) eines der größten Biotechnologie-Zentren Europas mit ca. 7.500 Mitarbeitenden. Hier werden für den Weltmarkt diagnostische Proteine, Reagenzien und Einsatzstoffe sowie therapeutische Proteine biotechnologisch hergestellt. Das Unternehmen beabsichtigt mit diesem Projekt, seine Wärmeversorgung am Standort Penzberg zukünftig CO 2 -frei zu gestalten und unabhängig von fossilen Energieträgern zu werden. Derzeit erfolgt die Wärmeversorgung über die drei Verteilungsnetze Dampfnetz, Nahwärmenetz mit 90/70 Grad Celsius und Wärmerückgewinnungsnetz (WRG-Netz) mit 20/30 Grad Celsius, wobei die Versorgung des Dampf- und Nahwärmenetzes noch vollständig auf Erdgas basiert. Dieses wird in verschiedenen BHKWs und Dampfkesseln eingesetzt, um das gesamte Werk zu versorgen. Nunmehr soll das bestehende WRG-Netz zwar weiterverwendet, jedoch zu einem NT45 Netz (NiederTemperaturNetz, 45 Grad Celsius Vorlauftemperatur) umgebaut werden, um auf Grundlage des höheren Temperaturniveaus nun auch Gebäude beheizen und die bestehende Dampf-Luftbefeuchtung durch Wasserbefeuchtung ersetzen zu können. Die Temperaturerhöhung von 30 Grad Celsius (des Wassers aus dem WRG-Netz) auf 45 Grad Celsius erfolgt mittels Wärmepumpen, die als Wärmequelle vorhandene Abwärmepotenziale (Prozesswärme) des Werks einsetzen. Dazu werden von den bestehenden Kältemaschinen zwei zusätzlich für die Nutzung als Wärmepumpen umgebaut und können in beiden Funktionen betrieben werden. Die Wärmepumpen werden mit 100 Prozent (zertifiziertem) Grünstrom betrieben. Mit dem NT45-Netz werden die Gebäude mit Niedertemperatur versorgt, die bisher mit Erdgas beheizt wurden. Des Weiteren setzt der Standort bei raumlufttechnischen Anlagen auf Wasserbefeuchtung statt Dampfbefeuchtung. Die Temperierung der Luft erfolgt ebenso mit dem Niedertemperaturmedium. Der COP (“Coefficient of Performance” - Heizleistung je elektrische Antriebsleistung) von sieben und mehr ist erheblich größer als bei standardisierten Wärmepumpen, die einen COP von drei bis fünf haben. Durch die Nutzung der Abwärme wird zusätzlich der Einsatz von Kühltürmen minimiert, woraus sich Einsparungen von Wasser (36.000 Kubikmeter/Jahr), Strom (18.200 Megawattstunden/Jahr) und Bioziden ergeben. Die jährlichen CO 2 -Einsparungen liegen für 2023 bis 2025 bei 1.737 Tonnen CO 2 , steigern sich dann bis 2029 um weitere 2.171 Tonnen CO 2 , so dass diese dann ab 2030 insgesamt bei 3.908 Tonnen CO 2 liegen werden. Diese Größenordnungen zeigen, welche Potenziale in der Nutzung von Prozesswärme liegen. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Klimaschutz Fördernehmer: Roche Diagnostics GmbH Bundesland: Bayern Laufzeit: seit 2022 Status: Laufend
Berlin hat sich das Ziel gesetzt bis spätestens 2045 klimaneutral zu werden und bis 2030 die CO 2 Emissionen um 70 % zu reduzieren. Zentrales Instrument zur Erreichung der Berliner Klimaziele ist das Berliner Energie- und Klimaschutzprogramm (BEK 2030). Am 20.12.2022 hat der Berliner Senat die Fortschreibung des Berliner Energie- und Klimaschutzprogramms für die Umsetzungsphase 2022-2026 beschlossen und zur Beschlussfassung an das Abgeordnetenhaus überwiesen. Pressemitteilung zum Senatsbeschluss vom 20.12.2022 BEK 2030 Umsetzungsphase 2022-2026 ( Austauschseiten 66, 162 und 163 ) Die Fortschreibung des Klimaschutzteils des BEK 2030 erfolgte seit Herbst 2021 im Rahmen eines partizipativen Prozesses unter Beteiligung unterschiedlichster Stakeholder und der Stadtgesellschaft sowie unter Einbindung eines koordinierenden Fachkonsortiums, das im Juni 2022 seine Ergebnisse vorgestellt hatte. Weitere Informationen zum Beteiligungsprozess inklusive des Abschlussberichts finden sich auf der Seite Erarbeitungs- und Beteiligungsprozess . Auf Grundlage des Endberichts des Fachkonsortiums hat die für das BEK fachzuständige Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz eine Vorlage erarbeitet, in der auch die Empfehlungen des Berliner Klimabürger*innenrates berücksichtigt wurden. Im Berliner Klimabürger:innenrat hatten parallel im Zeitraum von April bis Juni 2022 einhundert zufällig ausgeloste Berlinerinnen und Berliner in acht wissenschaftlich begleiteten Sitzungen stellvertretend für die Stadtgesellschaft Herausforderungen beim Klimaschutz diskutiert und 47 konkrete Handlungsempfehlungen an den Senat erarbeitet. Auch die Fortschreibung des Berliner Energie- und Klimaschutzprogramms vereint die Themen Klimaschutz und Klimaanpassung, wobei der Klimaanpassungsteil parallel in einem verwaltungsinternen Prozess von der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt unter Einbeziehung zahlreicher Senatsverwaltungen sowie nachgelagerten Behörden entwickelt wurde. Mit der Fortschreibung des BEK 2030 für den Umsetzungszeitraum 2022 bis 2026 wurden erstmals Sektorziele zur Emissionsminderung für die Handlungsfelder Energie, Gebäude, Verkehr und Wirtschaft festgelegt. Als weitere Neuerung wurden zur besseren Bewertung und zeitnahen Nachsteuerung für die Maßnahmen weitestgehend konkrete, quantitative Ziele und Indikatoren bzw. Umsetzungszeitpunkte definiert. Im Bereich Klimaschutz wurden 71 Maßnahmen im Bereich Klimaschutz und identifiziert, die der Senat in den nächsten Jahren umsetzen soll, um die CO 2 -Emissionen zu verringern. Im Klimaschutzbereich kommt im Handlungsfeld Energie der Umstellung auf fossilfreie Energieträger in der Strom- und Wärmeversorgung eine zentrale Rolle zu. Es gilt, alle verfügbaren Potentiale an erneuerbaren Energien in den Bereichen Solar, Wind, Abwärme, Geothermie und Bioenergie bestmöglich zu erschließen und entsprechende Infrastrukturen für Speicherlösungen aufzubauen. Wichtige Maßnahmen sind die Weiterentwicklung und Umsetzung des Masterplans Solarcity und die kommunale Wärmeplanung. Im Handlungsfeld Gebäude sind die Steigerung der energetischen Sanierungsrate im Bestand, der klimaneutrale Neubau sowie der Ausstieg aus fossilen Brennstoffen für die Versorgung der Gebäude als zentrale Schlüsselfaktoren benannt. Wichtige Maßnahmen sind hier die Entwicklung einer räumlichen Wärmeplanung sowie der Ausbau von Beratungsangeboten und Landesförderprogrammen für Gebäudeeigentümer*innen. Das Land Berlin wird zudem die sozialverträgliche Umsetzung von Sanierungspflichten im Gebäudebestand auf der Bundesebene befürworten. Im Handlungsfeld Verkehr gilt es, Maßnahmen für eine Mobilitätswende zu implementieren und umzusetzen. Dies ist im Personenverkehr der Ausbau von Rad- und Fußverkehrsinfrastrukturen oder die qualitative Verbesserung und quantitative Ausweitung des Angebotes öffentlicher Verkehrsmittel. Die Umstellung der kommunalen Fahrzeugflotte auf klimaschonende Antriebe soll dabei beispielgebend sein. Als neue Maßnahmen werden u.a. die Einrichtung einer Null-Emissionszone innerhalb des S-Bahn-Rings und eine Neuaufteilung des öffentlichen Straßenraums, die dem Umweltverbund, aber auch Stadtgrün und Aufenthaltsmöglichkeiten, Vorrang vor dem motorisierten Individualverkehr einräumt, angegangen. Die Klimaanpassung wurde im Zuge der Fortschreibung des BEK 2030 inhaltlich gestärkt und umfasst nun 53 Maßnahmen. Hier wurden die bisherigen acht Handlungsfelder Gesundheit, Stadtentwicklung und Stadtgrün, Wasser, Boden, Forstwirtschaft, Mobilität, Industrie und Gewerbe und Bevölkerungsschutz um die zwei neuen Handlungsfelder Biologische Vielfalt sowie Tourismus, Sport und Kultur erweitert. Im Handlungsfeld (HF) Gesundheit liegt der Fokus auf der Entwicklung und Etablierung eines Hitzeaktionsplanes (HAP) für das Land Berlin, verbunden mit Maßnahmen zur Sensibilisierung der Bevölkerung und einer Stärkung der Eigenvorsorge sowie die Schaffung zielgruppenspezifischer Informationen zu Hitze und UV-Strahlung. Im HF Stadtentwicklung sollen neben der Klimaanpassung in der Planung und bei der Errichtung neuer Stadtquartiere auch die Klimaanpassung im Gebäudebestand entsprechend berücksichtigt werden. Eine klimatische Qualifizierung der Stadtoberfläche soll zudem im HF Boden durch massive Entsieglung vorangetrieben werden. Als strategisches Ziel wird dabei eine Netto-Null-Versiegelung bis 2030 angestrebt. Dem gleichermaßen massiv vom Klimawandel betroffenen Stadtgrün kommt ebenfalls eine Schlüsselrolle zu, da es essentielle Ökosystemleistungen (Verschattung und Verdunstungskühlung, Luft- und Wasserfilterung, Bodenneubildung und Erhöhung der Biodiversität) erbringt. Deshalb muss das Stadtgrün klimaresilient gestaltet, entsprechend gepflegt und geschützt werden. Dafür sollen neben einer nachhaltigen Grünanlagenentwicklung u.a. das Berliner Mischwald-Programm (HF Forstwirtschaft) und die Stadtbaumkampagne konsequent fortgeführt werden. In Ergänzung dazu wird im HF Wasser eine Neuausrichtung der Regenwasserbewirtschaftung im öffentliche Raum angestrebt. Neben den spezifischen Klimaschutz- und Klimaanpassungsmaßnahmen gibt es ein neues Handlungsfeld, in dem übergreifende Themen und Herausforderungen wie Fachkräftemangel, bezirklicher Klimaschutz, Klimabildung oder bürgerschaftliches Engagement adressiert werden. Bild: SenMVKU Klimabürger:innenrat Hintergrundinformationen zum Verfahren des „Berliner Klimabürger:innenrats“. Weitere Informationen Bild: Thomas Imo (photothek) Erarbeitungs- und Beteiligungsprozess Hintergrundinformationen zum Erarbeitungsprozess des Berliner Energie- und Klimaschutzprogramms (BEK 2030) (Umsetzungszeitraum 2022-2026) Weitere Informationen Bild: SenUMVK Berichte Berichte zu Monitoring und Umsetzung des BEK 2030 sowie zur Sektorzielerreichung Weitere Informationen
Als Fachplanerin oder Fachplaner werden Sie von Akteuren, die sich mit einer Nahwärmelösung beschäftigen, herangezogen, um technische Machbarkeit, Potenziale und Wirtschaftlichkeit zu bewerten. Ihnen stehen dafür eine Reihe von öffentlich verfügbaren Potenzialanalysen zur Verfügung, die von der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt in Auftrag gegeben wurden, um erneuerbare Wärmequellen und Abwärmepotenziale detailliert zu erfassen. Die vorhandenen Potenzialanalysen können Sie hier abrufen: Potenzialanalysen . Karten zu den vorhandenen Potenzialen sowie zu Restriktionen (z.B. Trinkwasserschutzgebiete mit Einschränkungen für die Nutzung von Geothermie) können Sie im Geoportal Berlin sowie im Energieatlas Berlin abrufen. Ab 2025 wird auch das Wärmekataster des Landes Berlin als zentrales Auskunftssystem bereitstehen, das den planenden Stellen der Senats- und Bezirksverwaltungen umfassende Informationen über Wärmeverbräuche und -potenziale zur Verfügung stellen wird. Die Informationen aus dem Wärmekataster werden teilweise auch anderen Stakeholdern zugänglich gemacht.
Standorte von Anlagen für Produktion und Energieumwandlung, an denen Potenziale für Abwärmenutzung bestehen. Die Darstellung erhebt keinen Anspruch auf Vollständigkeit! Weitere Anbieter von Abwärme können jederzeit in diese Darstellung aufgenommen werden.
Kommunale Kläranlagen in Bayern, deren zugehörige Kanalnetze Potenzial zur Gewinnung von Wärme mittels Wärmepumpen besitzen.
Wenn sich herausgestellt hat, dass das Gebiet sich grundsätzlich für eine Nahwärmeversorgung eignet, geht es darum, zu konkretisieren, wie das zukünftige Nahwärmenetz aussehen kann und welche Schritte notwendig sind, um es zu realisieren. Dabei sind sowohl technische als auch wirtschaftliche und organisatorische Aspekte zu analysieren. Einen guten Überblick über die technischen Fragestellungen, die in dieser Phase relevant sind, liefert die “Checkliste Gebäude- und kleine Wärmenetze” der dena. Kurz zusammengefasst sind Informationen zu den folgenden Themen zusammenzutragen: Potenzielle Wärmeabnehmer und deren Wärmebedarfe: gibt es ggf. Ankerkunden wie öffentliche Gebäude (z.B. Schulen) Mögliche Trassenführung und notwendige Querung von Straßen bzw. Öffentlichen Grünflächen Bestehende Infrastruktur (einschließlich Stromleitungen) Möglicher Standort der Energiezentrale Potenzial von Umweltwärmequellen (z.B. oberflächennahe Geothermie, Gewässer, Abwasserkanäle …) Potenzial von Abwärme aus lokalen Industrie- oder Gewerbebetrieben Solarpotenzial (Solarthermie, Photovoltaik) Mögliche Wärmespeicherung Notwendiges/ sinnvolles Temperaturniveau: ggf Sanierungsbedarf bei Gebäuden Kaltes oder warmes Netz Ob ein kaltes Nahwärmenetz infrage kommt, ist abhängig von dem Potential der Umweltwärmequellen und der Abwärme vor Ort. Ist kein ausreichendes Potential vorhanden, um den Wärmebedarf zu decken, kann ein kaltes Nahwärmenetz nicht realisiert werden. Wird stattdessen ein Niedertemperatur-Nahwärmenetz in Betracht gezogen, muss vor allem ein geeigneter Standort für die Aufstellung der zentralen Wärmeerzeuger gefunden werden. Die Klärung dieser Fragestellung ist durch qualifizierte Fachplanerinnen und Fachplaner oder Unternehmen durchzuführen. Die Ergebnisse sollten in Form einer Machbarkeitsstudie oder eines Konzepts zusammengefasst werden, die als Grundlage für die nächsten Schritte dienen. Die Erarbeitung kann unter bestimmten Voraussetzungen auch gefördert werden. Informationen zu Fördermöglichkeiten finden Sie hier (Link zu Fördermöglichkeiten). Neben den technischen Fragen sollte in dieser Phase auch geklärt werden, welches Betreibermodell für das zukünftige Wärmenetz angestrebt wird und welche Verantwortung unterschiedliche Akteure übernehmen sollen oder können (beispielsweise öffentliche Hand, Energieversorgungsunternehmen, Bürgerenergiegenossenschaft). Im Konzept sollten auch Förder- und Finanzierungsmöglichkeiten für die darauffolgenden Phasen untersucht und die wirtschaftliche Tragfähigkeit geprüft sowie ggf. Preismodelle durchdacht werden. Weiter zur Planungsphase
Umweltwärme und Wärmepumpen Abwärme Solarthermie Photovoltaisch-Thermische (PVT) Module Oberflächennahe Geothermie Eisspeicher Biomasse Biogas / Bio-Methan Die neuen Generationen von Wärmenetzen ermöglichen es, Wärme aus der Umgebung für die Versorgung von Gebäuden nutzbar zu machen, die für konventionelle Wärmenetze der älteren Generationen nicht erschlossen werden konnte. Schlüsseltechnologie, um diese Wärmequellen zu nutzen, ist die Wärmepumpe. Das grundlegende Funktionsprinzip einer Wärmepumpe ähnelt einem Kühlschrank, nur, dass der thermodynamische Kreisprozess in die umgekehrte Richtung läuft. Während im Kühlschrank die Wärme aus dem Inneren abgeführt und an die Umgebung übertragen wird, entzieht die Wärmepumpe einer Wärmequelle Energie und hebt diese, angetrieben meist durch Elektrizität, auf ein höheres Temperaturniveau, sodass sie zum Heizen genutzt werden kann. Die Wärmepumpe besteht aus einem geschlossenen Kreislauf, in dem ein Kältemittel zirkuliert und einen thermodynamischen Kreisprozess durchläuft. Die wesentlichen Komponenten einer Wärmepumpe sind Verdampfer, Verdichter, Kondensator und Drosselventil. Der Verdampfer ist ein Wärmeübertrager, in dem die Wärme der externen Wärmequelle an das Kältemittel in der Wärmepumpe übergeht, wodurch dieses verdampft. Durch den Verdichter wird der Druck des nun gasförmigen Kältemittels erhöht. Dadurch kommt es auch zu einer Erhöhung der Temperatur des Kältemittels. Diese muss oberhalb der zu erreichenden Heiztemperatur liegen, damit es im Kondensator, einem weiteren Wärmeübertrager, zur Abgabe der Wärme an das Heizwasser kommt. Durch die Wärmeabgabe kondensiert das Kältemittel im Kondensator und liegt wieder flüssig vor. Der Kondensator wird daher auch oft als Verflüssiger bezeichnet. Das Drosselventil reduziert den Druck des Kältemittels, wodurch die Temperatur weiter abfällt und der Kreisprozess mit Wiedereintritt in den Verdampfer von vorn beginnen kann. Zu den möglichen Wärmequellen zählen unter anderem Außenluft, Oberflächengewässer und Grundwasser sowie die oberen Schichten des Erdreichs (oberflächennahe Geothermie). Entsprechend kommen folgende Wärmepumpen-Typen zum Einsatz: Luft-Wasser-WP; Außenluft oder Abluft einer technischen Anlage Sole-Wasser-WP; Erdkollektoren und -sonden, PVT, Eisspeicher, etc Wasser-Wasser-WP; Grundwasser, Flusswasser, Abwasser, Kühlwasser Weiterführende Informationen Umweltbundesamt Bundesverband Wärmepumpe zur grundlegenden Funktionsweise von Wärmepumpen Bundesverband Wärmepumpe zur Rolle von Wärmepumpen in Nah- und Fernwärmenetzen Abwärme ist Wärme, die als Nebenprodukt in einem Prozess entsteht, dessen Hauptziel die Erzeugung eines Produktes, die Erbringung einer Dienstleistung oder eine Energieumwandlung ist, und ungenutzt an die Umwelt abgeführt werden müsste . Kann die Abwärme nicht durch eine Optimierung der Prozesse, bei denen sie entsteht, vermieden werden, wird sie als unvermeidbare Abwärme bezeichnet. Aus Effizienzgründen sollte eine hierarchisierte Verwendung mit Abwärme angestrebt werden: 1. Verfahrensoptimierung/ Vermeidung, 2. prozess- bzw. anlageninterne Nutzung, 3. betriebsinterne Nutzung, 4. außerbetriebliche Nutzung. Je nach Temperaturniveau der Abwärme lässt sie sich für unterschiedliche Zwecke nutzen. Abwärme kann bei ausreichend hohen Temperaturen direkt in Fern- und Nahwärmenetze eingespeist werden oder über Wärmepumpen auf das benötigte Temperaturniveau angehoben werden. Bei niedrigen Temperaturen ist die Nutzung in LowEx- oder teilweise auch kalten Nahwärmenetzen möglich. Unvermeidbare und damit extern nutzbare Abwärme fällt typischerweise in Industrieprozessen an. Aber auch die Abwärme von Kälteanlagen, die beispielsweise zur Kühlung von Rechenzentren oder großer Büro- und anderer Nichtwohngebäude genutzt werden, lässt sich sinnvoll in Wärmenetzen nutzen. Abwasserwärme ist eine weitere übliche Abwärmequelle in urbanen Gebieten, die ganzjährig eine Temperatur zwischen etwa 12 °C und 20 °C aufweist. Sie eignet sich daher besonders für die Nutzung als Wärmequelle für Wärmepumpen oder in kalten Netzen. Eine Herausforderung bei der Nutzung von unvermeidbarer Abwärme können Schwankungen im Wärmeangebot sein. So fällt Abwärme von Kälteanlagen zur Büroklimatisierung hauptsächlich im Sommer an und auch Abwärme aus Industrieprozessen kann z.B. bedingt durch Produktionszyklen volatil sein. Hier ist in der Detailplanung des Nahwärmenetzes darauf zu achten, dass ein unregelmäßiges Abwärmeangebot durch entsprechende Speicher oder andere, regenerative Quellen ausgeglichen werden kann. Weiterführende Informationen Informationen rund um Abwasserwärme der Berliner Wasserbetriebe Analyse zum Abwärmepotenzial der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt Die Einstrahlung der Sonne kann zur direkten Erwärmung eines Wärmeträgermediums genutzt werden. Diese Umwandlung von Sonnenenergie in thermische Energie über Kollektoren wird Solarthermie genannt. Dabei kommen hauptsächlich Flachkollektoren oder Vakuumröhrenkollektoren zum Einsatz. Bei Flachkollektoren sind Kupferrohre in eine verglaste Absorberebene eingelassen. Vakuumröhrenkollektoren zeichnen sich durch einzelne, parallele und vakuumierte Glasröhren aus, in denen das Heizrohr mit Absorber verläuft. In den Kollektoren strömt in der Regel ein Wasser-Glykol-Gemisch, auch Sole, Solarflüssigkeit oder Wärmeträgerflüssigkeit genannt. Das beigemischte Glykol dient als Frostschutz, um bei geringer Einstrahlung und Außentemperatur ein Einfrieren im Winter zu verhindern. Mit Vakuumröhrenkollektoren können höhere Temperaturen und damit höhere Erträge pro Kollektorfläche erzielt werden. Besondere Bauformen besitzen auch Parabolspiegel, die das Sonnenlicht stärker auf die Absorber konzentrieren. Auch Systeme, die Wasser statt Sole führen, werden eingesetzt. Der Vorteil besteht in der höheren Wärmekapazität von Wasser gegenüber Sole, wodurch höhere Erträge und Temperaturen erzielt werden können. In wasserführenden Systemen findet im Winter bei fehlender Einstrahlung in regelmäßigen Abständen eine Zwangsumwälzung des Wassers statt, wodurch ein Einfrieren des Wärmeträgermediums in den Rohren vermieden wird. Mit einem Jahresertrag pro benötigte Grundfläche von 150 kWhth/(m²*a), ist die durchschnittliche Flächeneffizienz von ST-Anlagen beispielsweise um den Faktor 30 höher als die von Biomasseheizwerken bei der Verwendung von Holz aus Kurzumtriebsplantagen. In den letzten Jahren werden Solarthermie-Projekte zur Einspeisung in großstädtische Wärmenetze verstärkt umgesetzt. Bei der Einbindung von Solarthermischen Anlagen in Wärmenetze bietet sich sowohl die zentrale als auch die dezentrale Variante an. Zentrale Systeme speisen am Standort des Hauptwärmeerzeugers oft in einen vorhandenen Wärmespeicher ein. Dazu wird die Wärme von der Anlage über ein separates Rohrsystem zu der Heizzentrale geführt. Zu beachten: Im Sommer kann eine solarthermische Anlage die Deckung der gesamten Wärmelast übernehmen und je nach Auslegung auch einen Wärmespeicher füllen. Im Winter wird in der Regel ein weiterer Wärmeerzeuger eingesetzt, da Leistung und Wärmemenge aus der Solaranlage oft nicht ausreichen. Die Solarthermie kann in Wärmenetzen in Konkurrenz zu Grundlastquellen oder -Erzeugern stehen, z.B. Abwärme, Biomasse oder Blockheizkraftwerk (BHKW) und so den Bedarf an nötigem Wärmespeichervolumen erhöhen Eine Nutzung als Wärmequelle in kalten Netzen gestaltet sich schwierig, da die Sommertemperaturen zu hoch sind Weiterführende Informationen Solarthermie Wärmenetze PVT-Kollektoren sind ein Spezialfall der Sonnenenergienutzung. Sie kombinieren Photovoltaikzellen und solarthermische Kollektoren, um so Wärme und Strom in einem Modul zu erzeugen. Die verfügbare Dachfläche wird so optimal ausgenutzt. Die Kollektoren bestehen aus einem PV-Modul und einem rückseitig montiertem Wärmeübertrager. Dadurch, dass zeitgleich zur Stromerzeugung Wärme abgeführt wird, entsteht ein Kühleffekt, der zu einem höheren Stromertrag führt, da die Effizienz von PV-Modulen temperaturabhängig ist. PVT-Module gibt es in mehreren Varianten, die sich vor allem durch das Temperaturniveau der erzeugten Wärme unterscheiden. Für die Erzeugung hoher Temperaturen wird der Wärmeübertrager vollständig mit Wärmedämmung eingehaust. Dadurch geht jedoch der stromertragssteigernde Kühleffekt an den PV-Zellen verloren, sodass diese Module vor allem zur Erzeugung von Prozesswärme eingesetzt werden. Als Wärmequelle für Wärmepumpen in Nahwärmenetzen eignen sich daher vor allem ungedämmte sogenannte unabgedeckte PVT-Kollektoren, bei denen die Rohre des Wärmeübertragers mit zusätzlichen Leitblechen für einen Wärmeübergang aus der Luft optimiert sind. Diese liefern ganzjährig Energie, die beispielsweise direkt in ein kaltes Nahwärmenetz eingespeist werden kann. Weiterführende Informationen Informationen zu PVT-Modulen und Wärmepumpen im Rahmen des Forschungsprojektes integraTE Verwendung von PVT-Modulen im degewo Zukunftshaus In den oberen Erdschichten folgt die Bodentemperatur der Außenlufttemperatur. Mit zunehmender Tiefe steigt die Temperatur an und ist ab ca. 15 m unter Gelände Oberkante nahezu konstant. Die Wärme aus dem Erdreich kann über verschiedene horizontale und vertikale Erdwärmeübertrager oder auch Grundwasserbrunnen gewonnen und als Wärmequelle für Wärmepumpen genutzt werden. Horizontale Erdwärmeübertrager werden Erdkollektoren genannt. Es handelt sich hierbei um Rohrregister, üblicherweise aus Kunststoff, die horizontal oder schräg, spiral-, schrauben- oder schneckenförmig in den oberen fünf Metern des Untergrundes verlegt werden. Bei der häufigsten Nutzung der Erdwärme werden Erdsonden – meist Doppel-U-Rohrleitungen in vertikalen Tiefenbohrungen bis 100 m verwendet. Ab Tiefen über 100 m gilt Bergbaurecht, womit komplexere Genehmigungsverfahren verbunden sind, die eine Nutzung in kleinen, dezentralen Netzen in der Regel ausschließen. Perspektivisch wird durch das 4. Bürokratieentlastungsgesetz voraussichtlich die oberflächennahe Geothermie bis 400 m nicht mehr unter das Bergrecht fallen. Es können mehrere Sonden zu einer Anlage vereint werden. Hierbei ist durch einen ausreichenden Abstand der Sonden untereinander eine gegenseitige Beeinflussung auszuschließen. Auch zu benachbarten Grundstücken muss ein entsprechender Abstand gewahrt bleiben. In Erdwärmeübertragern wird ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, verwendet, da die Temperatur der Sole auch unter 0 °C fallen kann. Aufgrund des Einsatz Wassergefährdender Stoffe und weil der Eingriff in den Wärmehaushalt nach geltendem Recht eine Gewässernutzung darstellt, ist für Erdwärmesonden im Allgemeinen und Erdwärmekollektoren, die weniger als 1 m über dem höchsten Grundwasserstand verlegt werden, in Berlin eine wasserbehördliche Erlaubnis erforderlich. Als Alternative zu Erdsondenanlagen kommen bei größeren Anlagen auch Grundwasserbrunnen in Frage, bei denen über zwei Bohrungen die im Grundwasser enthaltene Wärme genutzt wird. Dabei dient eine Bohrung der Entnahme und eine weitere der Rückspeisung des entnommenen Wassers. Die Eignung des örtlichen Grundwasserleiters für eine Wärmeanwendung muss im konkreten Einzelfall geprüft werden. Für eng bebaute Gebiete eignet sich auch ein Koaxialsystem in Form eines Grundwasserzirkulationsbrunnens, welcher aus nur einer Bohrung besteht. Weiterführende Informationen Informationen und Anforderungen zur Erdwärmenutzung in Berlin Energieatlas mit geothermischen Potenzialen Informationen zur oberflächennahen Geothermie Beim Phasenübergang von flüssig zu fest gibt Wasser bei konstantem Temperaturniveau Energie in Form von Wärme ab. Diese Wärme, die allein bei der Aggregatzustandsänderung transportiert wird, wird als latente Wärme bezeichnet. Bezogen auf die Masse von 1 kg handelt es sich um die Erstarrungsenthalpie eines Stoffes, die bei Wasser in etwa der Energiemenge entspricht, die auch benötigt wird, um dasselbe 1 kg Wasser von 0 °C auf 80 °C zu erwärmen. Zu- oder abgeführte Wärme, die eine Temperaturveränderung bewirkt, wird als sensible Wärme bezeichnet. In Eisspeichern wird eine Wassermenge, z.B. in einer unterirdischen Betonzisterne durch Wärmeentzug vereist. Dazu strömt ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, mit geringerer Temperatur als dem Gefrierpunkt von Wasser durch Rohrspiralen im Speicher. Durch den Temperaturgradienten kommt es zum Wärmetransport zwischen dem erstarrenden Wasser in der Betonzisterne und der Sole in den Rohrspiralen. Die latente Wärme aus dem Phasenübergang des Wassers wird an die Sole übertragen, welche sich dadurch erwärmt. Die erwärmte Sole dient wiederum einer Wärmepumpe als Wärmequelle. Am Verdampfer der Wärmepumpe gibt die Sole die Wärme wieder ab und kann anschließend erneut Wärme aus dem Eisspeicher aufnehmen. Durch Kombination mit Solarkollektoren kann die Effizienz der Anlage erhöht werden, wenn die damit gewonnene thermische Energie zur Regeneration des Eisspeichers genutzt wird. Weiterführende Informationen Informationen zu Eisspeichern Funktion und Kosten von Eisspeichern im Überblick Bei der Wärmebereitstellung durch Biomasse kommen in der Regel Anlagen zum Einsatz, in denen holzartige Biomasse verfeuert wird. Hierfür gibt es verschiedene Brennstoffe, die sich in Qualität und Kosten z.T. deutlich unterscheiden. Holzpellets sind kleine hochstandardisierte Presslinge mit einer Länge von 2-5 cm, die in unter anderem aus Resten der Holzverarbeitung gepresst werden. Ihr Einsatz in Pelletkessel ist hoch automatisiert und damit nur wenig störanfällig. Dennoch sind jährlich kleinere Arbeiten durch z.B. Ascheaustragung o.ä. erforderlich. Zudem ist eine entsprechende Lagerhaltung in einem sogenannten Bunker inkl. Fördersystem erforderlich. Der Einsatz von Holzhackschnitzeln ist etwas arbeitsaufwändiger, da sowohl Brennstoff als auch das Gesamtsystem zur Wärmeversorgung weniger automatisierbar ist. Die Beschaffung des etwa bis zu 10 cm großen, mechanisch zerkleinerten Holzpartikel ist deutlich günstiger und sie können zudem auch in außenliegenden, überdachten Lagerbereichen oder Wirtschaftsgebäuden gelagert werden. Jedoch bestehen größere Anforderungen an die Einbringtechnik und den Betrieb einer Feuerungsanlage. Durch den gröberen Brennstoff, unterschiedliche Brennstoffqualitäten und Ascheaustrag, kann es gegenüber einem Pelletkessel zu häufigerem Arbeitsaufwand kommen, sodass regelmäßige Präsenzzeiten zur Betreuung erforderlich sind. Des Weiteren kann zur Verteilung des Brennstoffes auch schweres Arbeitsgerät vor Ort erforderlich werden. Neben einer reinen Verbrennung der Holzbrennstoffe kann in einem Vergaser auch Holzgas aus der Biomasse gewonnen werden, um diese anschließend in einem speziellen BHKW in Wärme und Strom umzuwandeln. Holz als Brennstoff ist ein vergleichsweise günstiger und preisstabiler Brennstoff, der jedoch einen gewissen Arbeitsaufwand mit sich bringt. Hierbei sind auch die gegenüber der Verbrennung von gasförmigen Energieträgern erhöhten Staubanteile im Abgas zu beachten, welche im urbanen Bereich stärkere Anforderungen an die Abgasreinigung und Ascheentsorgung mit sich bringen. Auch ist bei der Verwendung von nicht lokal verfügbarer Biomasse ein umfangreicher Logistikaufwand zu betreiben, was zu mehr Verkehr auf den Straßen und einer zusätzlichen Belastung durch Emissionen führt. Ebenso ist bei der Abwägung, ob die Wärme für ein Nahwärmenetz mit Holz erzeugt werden soll, zu berücksichtigen, dass Holz nur bedingt als „klimaneutral“ bezeichnet werden kann. Die Verbrennung setzt neben Feinstaub auch Treibhausgase wie CO 2 und Methan frei. Die Annahme, dass die Wärmeerzeugung mit Holz klimaneutral ist, setzt eine nachhaltige Waldbewirtschaftung voraus, bei der mindestens genauso viel Kohlenstoff durch das Wachstum neuer Bäume gebunden wird, wie durch die Verbrennung von Holz freigesetzt wird. Wird Holz aus nicht nachhaltiger Waldbewirtschaftung (beispielsweise der Abholzung von Urwäldern) für die Wärmeerzeugung verwendet, dann fällt die Bilanz der Umweltauswirkungen negativ aus. Eine stärkere Reduktion von Treibhausgasen kann zudem erreicht werden, wenn das Holz für langlebige Produkte (beispielsweise als Bauholz) verwendet wird, da der Kohlenstoff dann dem natürlichen Kreislauf auf längere Zeit entzogen wird und nicht als CO 2 in die Atmosphäre gelangt. Empfehlenswert für die Wärmeerzeugung ist daher vor allem Restholz aus Produktionsprozessen, das nicht für andere Nutzungen geeignet ist, sowie Altholz, das am Ende der Nutzungskaskade angekommen ist. Die Qualität von Holzbrennstoffen lässt sich verschiedenen Normen in Güteklassen einteilen. Hierfür dient bspw. die DIN EN ISO 17225 oder das DINplus-Zertifizierungsprogramm, um Vergleichbarkeiten zu ermöglichen und eine entsprechende Brennstoffqualität sicherzustellen. Des Weiteren sollten Nachweise über die Herkunft der Biomasse bei den Lieferanten angefragt werden, um möglichst regionale Produkte zu nutzen. Die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt hat zu den Potenzialen von Biomasse in Berlin eine Untersuchung durchführen lassen, deren Ergebnisse hier einzusehen sind: Biomasse . Weitere Informationen zu diesem Thema finden Sie beim Bundesumweltministerium: BMUV: Klimaauswirkungen von Heizen mit Holz sowie beim Umweltbundesamt: Heizen mit Holz . Weiterführende Informationen Hackschnitzel: Qualität und Normen FNR – Fachagentur Nachwachsende Rohstoffe Für die Wärmeerzeugung aus Biogas existieren regionale unterschiedliche Möglichkeiten. Im ländlichen Raum kann häufig direkt Biogas aus Gärprozessen aus der Landwirtschaft verwendet werden. Abfallstoffe wie z.B. Gülle können dafür genutzt werden, wie auch eigens dafür angebaute Energiepflanzen. Die Verwendung von Anbaubiomasse zur Produktion von Biogas steht jedoch in starker Kritik und kann ebenso wie die Produktion von flüssigen Energieträgern auf die Formel ‚Tank oder Teller‘ reduziert werden. Daher wurde mit den letzten Novellen des Erneuerbare-Energien-Gesetzes (EEG) die Nutzung von Anbaubiomasse zu Biogasproduktion immer weiter eingeschränkt (Stichwort ‚Maisdeckel‘). Biogas kann vor Ort genutzt und in Wärme und Strom umgewandelt und verbraucht bzw. über ein kleines Nahwärmenetz verteilt werden. Für eine Einspeisung in das Erdgasnetz ist eine Methan-Aufbereitung des Gases erforderlich. In Berlin besteht die Möglichkeit, ein Biogas- bzw. Biomethanprodukt eines beliebigen Lieferanten aus dem öffentlichen Gasnetz zu beziehen. Dieses Biomethan ist in der Regel aufbereitetes Biogas, z.B. aus Reststoffen oder Kläranlagen, welches in das Netz an einem anderen Verknüpfungspunkt eingespeist wird. Vor Ort zur (Strom- und) Wärmeerzeugung wird dann bilanzielles Biomethan eingesetzt – ähnlich dem Bezug von Ökostrom aus dem öffentlichen Versorgungsnetz. Der tatsächliche Anteil von Biomethan im Erdgasnetz entsprach im Jahr 2022 lediglich etwa 1 %. Bei dem Kauf gibt es entsprechende Nachweiszertifikate (z.B. “Grünes Gas Label” – Label der Umweltverbände oder TÜV) der Anbieter. Die Umsetzung in Wärme (und Strom) erfolgt dann klassisch über Verbrennungstechnologien wie Gaskessel oder BHKW.
Das energetische Potenzial an erneuerbarer und klimafreundlicher Wärme ist in NRW ausreichend vorhanden, um die Wärmeversorgung klimaneutral sicherzustellen. Das zeigen die heute (Freitag, 26. Januar 2024) vorgestellten Zwischenergebnisse einer Potenzialstudie des Landesamtes für Natur, Umwelt und Verbraucherschutz (LANUV) zur zukünftigen Wärmeversorgung in NRW. Auftraggeber ist das Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie (MWIKE). „In Summe übersteigen aus landesweiter Sicht die klimafreundlichen Erzeugungspotenziale den in der Studie ermittelten Raumwärme- und Warmwasserbedarf deutlich“, erläuterte Antje Kruse, Fachbereichsleiterin des LANUV-Fachzentrums Klimaanpassung, Klimaschutz, Wärme und Erneuerbare Energien. Inwiefern das theoretische Potenzial regional genutzt werden kann, wird nun innerhalb einer Szenarienanalyse ermittelt, die im Herbst dieses Jahres vorliegen soll. NRW hat ebenso wie der Bund das Ziel, bis 2045 die Wärmeversorgung vollkommen zu dekarbonisieren. Dafür muss unter anderem der Raumwärme- und Warmwasserbedarf von 123 bis 148 TWh/a im Jahr 2045 komplett durch klimafreundliche und erneuerbare Energien gedeckt werden. In der Studie, die von einem Konsortium bestehend aus den Instituten Fraunhofer IFAM, IEG, UMSICHT, der Hochschule Bochum und dem Solar-Institut Jülich bearbeitet wird, wurden alle relevanten Wärmeerzeugungsoptionen analysiert und deren energetisches Potenzial ermittelt. Das größte bereitstehende Potential für das Jahr 2045 wurde ermittelt bei der oberflächennahen Geothermie mit einem Potenzial von 135 TWh/a, der (mittel-)tiefen Geothermie (hydrothermal) mit 38 TWh/a sowie bei der industriellen Abwärme mit einem Potenzial von 35 TWh/a. Aber auch weitere Wärmequellen wie die Abwärme von Elektrolyseuren oder Rechenzentren, weisen ein regional bedeutsames Potenzial auf. In der Studie wurde auch erstmalig das Potenzial der Freiflächensolarthermie in NRW untersucht. Mit der Potenzialstudie zur Wärmeversorgung in NRW unterstützt das LANUV die Städte und Kommunen bei der Erstellung kommunaler Wärmepläne nach dem Wärmeplanungsgesetz. Das Gesetz sieht vor, den Bestand und das Potenzial regional zu ermitteln und anschließend in einer Szenarienanalyse zu beschreiben, wie innerhalb des Gemeindegebiets eine klimaneutrale Wärmeversorgung erreicht werden kann. Mit den vom LANUV erhobenen Daten, wird den Kommunen die Wärmeplanung erleichtert, da die landesweiten Daten als Grundlage dienen können und somit nicht von jeder Gemeinde eigens erhoben werden müssen. Alle in der Studie erhobenen Ergebnisse stehen nach Fertigstellung als Geodaten frei zum Download bereit. Mit der zurzeit laufenden Potenzialstudie zur zukünftigen Wärmeversorgung in NRW, vervollständigt das LANUV die umfangreichen Analysen einiger Vorgängerstudien, wie der Potenzialstudie Geothermie oder der Potenzialstudie zur industriellen Abwärme. Mit der neuen Studie wurden in einem ersten Schritt alle potenziellen klimafreundlichen und erneuerbaren Wärmequellen bis zum Jahr 2045 analysiert. In einem zweiten Schritt werden an Hand verschiedener Szenarien für jede Kommune Anwendungsmöglichkeiten dargestellt. Alle Informationen und Daten werden nach Abschluss der Studie im Energieatlas NRW zur Verfügung gestellt. Im dort integrierten Wärmekataster können alle neuen Daten zukünftig abgerufen werden, sobald diese innerhalb der Studie fertiggestellt und aufbereitet sind. Bereits heute können dort viele Daten, wie die derzeitige Raumwärmebereitstellung, abgerufen werden: www.energieatlas.nrw.de www.waermekataster.nrw.de Das neue Raumwärme- und Warmwasserbedarfsmodell ist das erste Datenpaket, welches nun im Open.NRW-Portal zur Verfügung steht und heruntergeladen werden kann. In den kommenden Monaten werden die Datenpakete um alle ermittelten Bedarfe und Potenziale ergänzt: https://www.energieatlas.nrw.de/site/service/download_daten Die Potentialstudie zur Wärmeversorgung in NRW wird im LANUV-Fachzentrum „Klimaanpassung, Klimawandel, Wärme und erneuerbare Energien“ bearbeitet. Das Fachzentrum hat die Aufgabe, Grundlagendaten und Lösungsansätze für die Herausforderungen, die sich aus dem anthropogenen Klimawandel und der Energiewende ergeben, zu erarbeiten und bereitzustellen. Thematische Schwerpunkte im Fachzentrum sind die Anpassung an den Klimawandel sowie die Strom- und Wärmewende. Das Fachzentrum betreibt die beiden digitalen Fachinformationssysteme Klimaatlas NRW und Energieatlas NRW, in denen die Arbeitsergebnisse für Bürgerinnen und Bürger, Kommunen, Wirtschaft und Politik adressscharf und regionalisiert zur Verfügung gestellt werden. Im Fachzentrum arbeiten Expertinnen und Experten aus den Bereichen Umwelt, Energie, Informatik, Kommunikation und Planung. zurück
Berlin hat sich mit dem Berliner Klimaschutz- und Energiewendegesetz (EWG Bln) das Ziel gesetzt, bis spätestens zum Jahr 2045 die CO 2 -Emissionen auf ein klimaneutrales Niveau zu senken. Dabei nimmt der Wärmesektor eine zentrale Rolle ein, da dieser für rund die Hälfte der CO 2 -Emissionen verantwortlich ist. So werden rund 47 % bzw. 8,4 Mio. t der Berliner CO 2 -Emissionen durch Beheizung, Klimatisierung oder Warmwassernutzung in Gebäuden verursacht (nach Verursacherbilanz, Bezugsjahr 2020). Die Machbarkeitsstudien „Klimaneutrales Berlin 2050“ und „Berlin Paris-konform machen“ wie auch das Berliner Energie- und Klimaschutzprogramm 2030 (BEK 2030) zeigen, dass auf dem Weg zur Klimaneutralität die Emissionen des Wärmesektors um mehr als 80 Prozent gesenkt werden müssen. Zudem hat sich der Berliner Senat mit der Anerkennung einer Klimanotlage in 2019 zu den Zielen der internationalen Staatengemeinschaft im Übereinkommen von Paris 2015 bekannt, die Erderwärmung auf deutlich unter zwei Grad Celsius und möglichst auf 1,5 Grad Celsius gegenüber vorindustriellen Werten zu beschränken. Entsprechend sind zusätzliche Anstrengungen zugunsten des Klimaschutzes erforderlich. Allerdings geht die Reduktion des Wärmebedarfs und auch die Dekarbonisierung der Wärmeerzeugung nur langsam voran. Bereits bestehende Programme und Reglungen auf Bundes- und Landesebene bewirkten im Gebäudebereich bzw. Wärmesektor mit Blick auf die Klimaneutralität noch zu geringe CO 2 -Einsparungen. Vor diesem Hintergrund sind weitere Anstrengungen erforderlich, um die Wärmewende voranzubringen. Daher wurde die Entwicklung einer Wärmestrategie für das Land Berlin beauftragt, die unter Leitung des Instituts für Ökologische Wirtschaftsforschung (IÖW) gemeinsam mit dem Hamburg Institut bis Mai 2021 erstellt wurde. Auf der Grundlage der gesetzten Ziele zur CO 2 -Einsparung sowie bereits erarbeiteter Programme und Maßnahmen wurde in der Wärmestrategie für das Land Berlin herausgearbeitet, wie die Wärmewende in Berlin umgesetzt werden kann und welche Voraussetzungen dafür geschaffen werden müssen. Es bedarf eines enormen Wandels und deutlich mehr Tempo in der Umsetzung als bislang. Neben einem raschen Umstieg auf klimafreundliche erneuerbare Energien, muss in den nächsten Jahren mehr und umfassender energetisch saniert werden. Leitlinie der Wärmestrategie ist die Wärmeversorgung weitgehend zu elektrifizieren oder auf netzgebundene Wärme umzustellen. Dabei sind Potenziale an erneuerbaren Energien und unvermeidbarer Abwärme umfassend zu nutzen. Der Wärmeverbrauch muss durch die energetische Gebäudesanierung gesenkt werden, auch um einen effizienten Einsatz von Wärmepumpen zu ermöglichen. Die Berliner Fernwärme ist durch die Einbindung erneuerbaren Energien sowie durch Elektrifizierung zu dekarbonisieren, nachzuverdichten und auszubauen. Entlang der Leitlinien zeigt die Wärmestrategie ein Set an Instrumenten zur Erreichung der Klimaziele im Wärmebereich auf. Unter anderem empfiehlt die Studie den Aufbau eines Wärmekatasters für Berlin mit Potenzialdaten zu erneuerbaren Energien und unvermeidbarer Abwärme sowie die Entwicklung einer Wärmeplanung. Stakeholder des Berliner Wärmemarktes wurden in zwei Workshops über den Fortschritt und die Zwischenergebnisse der Studie informiert und brachten ihr Wissen und ihre Erfahrung in die Entwicklung der Wärmestrategie ein. Auf den Berliner Energietagen 2021 wurden bereits erste wesentliche Studienergebnisse vorgestellt und diskutiert. Die Vorschläge und Instrumente der Wärmestrategie werden von der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt geprüft und bei entsprechender Umsetzbarkeit eingeführt. Als ein Schlüsselinstrument der Wärmestrategie und aus der Verpflichtung gemäß der Novelle des EWG Bln § 21 a wird aktuell ein Wärmekataster vorbereitet.
Die Potenziale von Abwärme in Berlin wurden im Zeitraum Januar bis September 2023 durch das Institut für ökologische Wirtschaftsforschung (IÖW) und das Institut für Energie- und Umweltforschung (IFEU) im Auftrag der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt (SenMVKU) erhoben. Kernelement der Erhebung war eine Online-Unternehmensbefragung, die sich an Betriebe des verarbeitenden Gewerbes sowie des Dienstleistungssektors wie etwa Rechenzentren richtete. Im Austausch mit den verantwortlichen Akteuren wurden außerdem die Abwärmepotenziale aus unterirdischen U-Bahn-Stationen, Umspannwerken und aus der zukünftigen Wasserstofferzeugung sowie die Potenziale an Restwärme im Rauchgas der Müllverbrennung und ihre zukünftige Entwicklung abgeschätzt. Neben den Ergebnissen zu den Potenzialen enthält der Abschlussbericht ein Maßnahmenset, mit dem das Land Berlin die Erschließung der Potenziale unterstützen kann. In zwei Workshops mit Akteuren u.a. aus Wirtschaft, Energieversorgung, Verwaltung und Verbänden wurden die Ergebnisse vorgestellt und diskutiert sowie gemeinsam Maßnahmen zur Unterstützung der Umsetzung von Abwärmeprojekten identifiziert und priorisiert. SenMVKU prüft das vorgeschlagene Maßnahmenset, um anschließend die Umsetzung von Maßnahmen zu initiieren. Die Potenziale im Status quo belaufen sich in der Summe auf knapp 1.200 GWh pro Jahr. Für 2030 wird ein Anstieg auf 2.600 GWh und für 2045 auf 3.800 GWh pro Jahr angenommen. Aktuell fallen im verarbeitenden Gewerbe jährlich mindestens 339 GWh an Abwärme an, vor allem in den Branchen Herstellung pharmazeutischer Erzeugnisse und Herstellung von Nahrungs- und Futtermitteln. Aus Rechenzentren sind weitere ca. 120 GWh pro Jahr an Abwärme zu erwarten, 460 GWh pro Jahr aus U-Bahn-Stationen, knapp 50 GWh pro Jahr aus Umspannwerken und ca. 225 GWh an bislang ungenutzter Restwärme in der Müllverbrennung, gebunden an das Rauchgas. Die starke Zunahme an Abwärme bis 2030 und bis 2045 ist primär auf den aktuell hohen erwarteten Zubau an Rechenzentren und den Aufbau an Elektrolyseuren für die Wasserstofferzeugung in Berlin zurückzuführen. Die standortbezogenen Daten zu den Abwärmepotenzialen in Berlin werden für die Integration in das sich in Entwicklung befindliche Wärmekataster aufbereitet. Zudem soll die Datengrundlage zu den Abwärmeströmen stetig erweitert und verbessert werden. In der unten verlinkten Karte sind erste Informationen zu den erhobenen standortbezogenen Abwärmepotenzialen dargestellt. Die Legende ist wie folgt zu interpretieren: Ein Kreis markiert einen Standort, an dem mit hoher Sicherheit Abwärme anfällt. Die Information stammt entweder von den Unternehmen selbst, sofern es sich an der Unternehmensbefragung beteiligt hat, oder sie konnte aus den Emissionserklärungen nach der Bundesimmissionsschutzverordnung abgeleitet werden. Ein Dreieck markiert Standorte, an denen eine höhere Unsicherheit darüber besteht, ob und in welchem Umfang Abwärme anfällt. Eine Unsicherheit kann dadurch bestehen, dass Unternehmen die Befragung unvollständig ausgefüllt haben. Generell kann aus den Informationen nicht abgeleitet werden, ob eine externe Nutzung der Abwärme z.B. in Wärmenetzen in Frage kommt. Tendenziell eignen sich eher größere Potenziale für eine Einspeisung in Wärmenetze. Eine quantitative Einschätzung zum Umfang des Abwärmepotenzials findet sich über die Größe des Symbols ebenfalls in der Karte.
Origin | Count |
---|---|
Bund | 79 |
Land | 14 |
Type | Count |
---|---|
Förderprogramm | 70 |
Text | 15 |
unbekannt | 6 |
License | Count |
---|---|
geschlossen | 20 |
offen | 71 |
Language | Count |
---|---|
Deutsch | 89 |
Englisch | 10 |
Resource type | Count |
---|---|
Dokument | 8 |
Keine | 50 |
Webdienst | 2 |
Webseite | 37 |
Topic | Count |
---|---|
Boden | 72 |
Lebewesen & Lebensräume | 66 |
Luft | 57 |
Mensch & Umwelt | 91 |
Wasser | 57 |
Weitere | 91 |