Nach #2 beträgt die Selektivität für die Produkte Phenol und Aceton ca. 91%, nach #1 97,4%, wahrscheinlich nach Abzug von Nebenprodukten. Die Bilanz folgt #1. Der Zwangsanfall von Aceton 615kg/tPhenol wird energetisch über Naphta gutgeschrieben. (1kg Aceton 31MJ = 19129MJ/t Phenol) Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 75,8% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation nach Masse
Nach #2 beträgt die Selektivität für die Produkte Phenol und Aceton ca. 91%, nach #1 97,4%, wahrscheinlich nach Abzug von Nebenprodukten. Die Bilanz folgt #1. Der Zwangsanfall von Aceton 615kg/tPhenol wird energetisch über Naphta gutgeschrieben. (1kg Aceton 31MJ = 19129MJ/t Phenol) Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 75,8% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation nach Masse
Nach #2 beträgt die Selektivität für die Produkte Phenol und Aceton ca. 91%, nach #1 97,4%, wahrscheinlich nach Abzug von Nebenprodukten. Die Bilanz folgt #1. Der Zwangsanfall von Aceton 615kg/tPhenol wird energetisch über Naphta gutgeschrieben.. (1kg Aceton 31MJ = 19129MJ/t Phenol) Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 75,8% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation nach Masse
Nach #2 beträgt die Selektivität für die Produkte Phenol und Aceton ca. 91%, nach #1 97,4%, wahrscheinlich nach Abzug von Nebenprodukten. Die Bilanz folgt #1. Der Zwangsanfall von Aceton 615kg/tPhenol wird energetisch über Naphta gutgeschrieben. (1kg Aceton 31MJ = 19129MJ/t Phenol) Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 75,8% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
technologyComment of phenol production (RER): This dataset models the Hock process, which is the main process that is used for the production of phenol. In this process, cumene is transformed into phenol in two stages: (i) oxidation of the cumene, and (ii) cleavage into phenol and acetone. The oxidation happens in large reactors at a temperature of about 90-120°C and 0.5-0.7 MPa pressure. The whole reaction is autocatalytic and exothermic, releasing about 800 kJ per kilogram of cumene hydroperoxide to the environment by active cooling systems, mainly water. The second reaction – the cleavage – is an acid-catalyzed reaction, using almost exclusively sulphuric acid as catalyst. Two different ways are used within industry – called homogeneous phase (using 0.1-2% sulphuric acid) rsp. heterogeneous phase (40-45% sulphuric acid at a concentrate-acid ratio of 1:5). Also this second step is strongly exothermic – releasing ca. 1680 kJ per kilogram of cumene hydroperoxide cleaved. After the cleavage, further cleaning steps are used to achieve in the end a phenol purity of >99.9%. This includes neutralization and removing of sulphuric acid, followed by distillation processes. The overall yield of the production of phenol for this case here is assumed to be in the order of 95%. The inventory is based on stoechiometric calculations. The emissions to air (0.2 wt% of raw material input) and water were estimated using mass balance. Treatment of the wastewater in an internal wastewater treatment plant is assumed (elimination efficiency of 90% for C). References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of phenol production, from cumene (RER): This process consists first in the production of cumene from the reaction of benzene and propylene. Cumene then reacts with oxygen to give phenol and acetone. For each kilogram of phenol produced, 0.63 kg of acetone are obtained. For the process 0.6 MJ/kg of electricity and 9.1 MJ/kg of steam are required per kg of phenol and 0.2 MJ/kg of electricity and 9.8 MJ/kg of steam required per kg of acetone (Saygin 2009). Chemical reaction: C9H12 + O2 -> C6H6O + C3H6O This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://daim.idi.ntnu.no/masteroppgaver/006/6362/tittelside.pdf, accessed 6 January 2017 SRI consulting. In: Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://daim.idi.ntnu.no/masteroppgaver/006/6362/tittelside.pdf, accessed 6 January 2017 Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://e-archivo.uc3m.es/bitstream/handle/10016/14718/Life%20Cycle%20Assessment%20of%20platform%20chemicals%20from%20fossil%20and%20lignocelulose%20scenarios.%20Martin%20Gallardo.pdf?sequence=2, accessed 6 January 2017 Saygin, D. 2009. Chemical and Petrochemical Sector Potential of best practice technology and other measures for improving energy efficiency. IEA information paper. IEA/OECD. Retrieved from: https://www.iea.org/publications/freepublications/publication/chemical_petrochemical_sector.pdf, accessed 6 January 2017 For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html)
technologyComment of hydroformylation of propylene (RER, RoW): In the oxo reaction (hydroformylation), carbon monoxide and hydrogen are added to a carbon – carbon double bond in the liquid phase in the presence of catalyst (hydrocarbonyls or substituted hydrocarbonyls of Co, Rh, or Ru). In the first reaction step aldehydes are formed with one more C-atom than the original olefins. For olefins with more than two C-atoms, isomeric aldehyde mixtures are normally obtained. In the case of propylene these consist of 1-butanal and 2-methylpropanal. imageUrlTagReplace600920a3-5103-4466-9c05-fd1d8ed0d89c There are several variations of the hydroformylation process, the differences being in the reaction conditions (pressure, temperature) as well as the catalyst system used. The classic high-pressure process exclusively used until the beginning of the 1970s operates at pressures of 20 – 30 MPa (200 – 300 bar) CO/H2 and temperatures of 100 – 180 °C. The catalyst is Co. It leads to about 75 % 1-butanol and about 25 % 2-methyl-1-propanol. The new process developments of the past few years have led to a clear shift in the range of products. The processes operating at relatively low pressures (1 – 5 MPa , 10 – 50 bar) use modified Rh-catalysts. The isomeric ratios achieved are about 92 : 8 or 95 : 5 1-butanol to 2-methyl-1-propanol. However, by the use of unmodified Rh the percentage of 2-methyl-1-propanol can be increased to about 50 %. Catalytic hydrogenation of the aldehydes leads to the formation of the corresponding alcohols. As only primary alcohols can be obtained via the oxo synthesis, it is not possible to produce 2-butanol and 2-methyl-2-propanol by this process. Reference: Hahn, H., Dämkes, G., Ruppric, N.: Butanols. In: Ullmann's Encyclopedia of In-dustrial Chemistry, Seventh Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. Wiley InterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/ technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).
technologyComment of methanol production (GLO): For normal methanol synthesis, reforming is performed in one step in a tubular reactor at 850 – 900 °C in order to leave as little methane as possible in the synthesis gas. For large methanol synthesis plants, Lurgi has introduced a two-step combination (combined reforming process) that gives better results. In the primary tubular reformer, lower temperature (ca. 800 °C) but higher pressure (2.5-4.0 MPa instead of 1.5-2.5 MPa) are applied. More recently, Lurgi developed another two-step gas production scheme. It is based on catalytic autothermal reforming with an adiabatic performer and has economical advantages for very large methanol plants. At locations where no carbon dioxide is available most of the methanol plants are based on the following gas production technologies, depending on their capacities: steam reforming for capacities up to 2000 t d-1 or combined reforming from 1800 to 2500 t d-1 (Ullmann 2001). For the energy and resource flows in this inventory a modern steam reforming process was taken as average technology. To estimate best and worst case values, also values from combined reforming and autothermal reforming were investigated. Methanol produced using a low pressure steam reforming process (ICI LPM) accounts for approximately 60% of the world capacity (Synetix 2000a). Besides steam reforming, combined reforming has gained importance due to the production of methanol in large plants at remote locations. The reaction of the steam-reforming route can be formulated for methane, the major constituent of natural gas, as follows: Synthesis gas preparation: CH4 + H2O → CO + 3 H2; ΔH = 206 kJ mol-1 CO + H2O → CO2 + H2; ΔH = - 41 kJ mol-1 Methanol synthesis: CO + 2 H2 → CH3OH; ΔH = -98 kJ mol-1 CO2 + 3 H2 → CH3OH + H2O; ΔH = -58 kJ mol-1 For an average plant the total carbon efficiency is around 75%, 81% for the synthesis gas preparation and 93% for the methanol synthesis (Le Blanc et al. 1994, p. 114). For steam reformers usually a steam to carbon ratio of 3:1 to 3.5:1 is used. As methanol production is a highly integrated process with a complicated steam system, heat recovery and often also internal electricity production (out of excess steam), there were only data of the efficiency and energy consumption of the total process available. Therefore the process was not divided into a reforming process, a synthesis process and a purification process for estimating the energy and resource flows. Also the energy and resource flows in the methanol production plants are site specific (dependent on the local availability of resources such as CO2, O2, or electricity). In this inventory typical values for a methanol plant using steam-reforming technology were used. The main resource for methanol production is natural gas, which acts as feedstock and fuel. A natural gas based methanol plant consumes typically 29-37 MJ (LHV) of natural gas per kg of methanol. This gas is needed as feedstock for the produced methanol (20 MJ kg-1 LHV) and also used as fuel for the utilities of the plant. From the converted feed, 1 kg methanol and 0.06 kg hydrogen is yielded. It was assumed that the purged hydrogen was also burned in the furnace. The only emission to air considered from burning hydrogen is NOX. The energy amount generated is not considered, because the process of the furnace is specified for natural gas as fuel. The NOX emissions of the hydrogen burning were therefore calculated separately. References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).
technologyComment of polystyrene production, extruded, CO2 blown (CA-QC, RER, RoW): Extrusion process of expandable polystyrene including discharge via slot die. CO2 as blowing agents, aceton as Co-blowing agent. technologyComment of polystyrene production, extruded, HFC-134a blown (CA-QC, RER, RoW): Extrusion process of expandable polystyrene including discharge via slot die. HCF-134a as blowing agents. technologyComment of polystyrene production, extruded, HFC-152a blown (RER, RoW): Extrusion process of expandable polystyrene including discharge via slot die. HFC-152a as blowing agents.
Gegenstand des Berichts ist die Erstellung eines Stoffberichts zur Toxikologie ausgewählter organischer Verbindungen (1,4-Dioxan, Acetophenon, Aceton, Tris(2-butoxyethyl)phosphat, Propan-2-ol, Propan-1-ol, Trikresylphosphat, Methanol) als Grundlage für die Bewertung und Ableitung von Richtwerten für die Innenraumluft. Grundsätzlich werden zwei Richtwerte vorgeschlagen: Der Richtwert II (RW II) stellt einen wirkungsbezogenen Wert dar, der sich auf die toxikologischen und epidemiologischen Kenntnisse zur Wirkungsschwelle eines Stoffes unter Berücksichtigung von Extrapolationsfaktoren stützt. Bei Erreichen bzw. Überschreiten des RW II besteht unverzüglich Handlungsbedarf, da diese Konzentration geeignet ist, insbesondere bei Daueraufenthalt in den Räumen die Gesundheit empfindlicher Personen einschließlich Kindern zu gefährden. Demgegenüber stellt der Richtwert I (RW I) die Konzentration eines Stoffes in der Innenraumluft dar, bei der im Rahmen einer Einzelstoffbetrachtung nach gegenwärtigem Kenntnisstand auch bei lebenslanger Exposition von empfindlichen Personen keine gesundheitlichen Beeinträchtigungen zu erwarten sind. Im vorliegenden Bericht werden die Daten zum Vorkommen und zur Toxizität der ausgewählten Verbindungen zusammengestellt und bewertet, mit Schwerpunkt auf der inhalativen Exposition. Auf Grundlage dieser Daten werden Vorschläge zur Ableitung der Richtwerte I und II vorgelegt. Dabei wird der gegenwärtige Stand der Diskussion im Ausschuss für Innenraumrichtwerte (AIR) aufgegriffen. Die abschließende Bewertung und Ableitung von Richtwerten ist jedoch dem AIR vorbehalten. Quelle: Forschungsbericht
Gegenstand des Berichts ist die Erstellung eines Stoffberichts zur Toxikologie ausgewählter organischer Verbindungen (1,4-Dioxan, Acetophenon, Aceton, Tris(2-butoxyethyl)phosphat, Propan-2-ol, Propan-1-ol, Trikresylphosphat, Methanol) als Grundlage für die Bewertung und Ableitung von Richtwerten für die Innenraumluft. Grundsätzlich werden zwei Richtwerte vorgeschlagen: Der Richtwert II (RW II) stellt einen wirkungsbezogenen Wert dar, der sich auf die toxikologischen und epidemiologischen Kenntnisse zur Wirkungsschwelle eines Stoffes unter Berücksichtigung von Extrapolationsfaktoren stützt. Bei Erreichen bzw. Überschreiten des RW II besteht unverzüglich Handlungsbedarf, da diese Konzentration geeignet ist, insbesondere bei Daueraufenthalt in den Räumen die Gesundheit empfindlicher Personen einschließlich Kindern zu gefährden. Demgegenüber stellt der Richtwert I (RW I) die Konzentration eines Stoffes in der Innenraumluft dar, bei der im Rahmen einer Einzelstoffbetrachtung nach gegenwärtigem Kenntnisstand auch bei lebenslanger Exposition von empfindlichen Personen keine gesundheitlichen Beeinträchtigungen zu erwarten sind. Im vorliegenden Bericht werden die Daten zum Vorkommen und zur Toxizität der ausgewählten Verbindungen zusammengestellt und bewertet, mit Schwerpunkt auf der inhalativen Exposition. Auf Grundlage dieser Daten werden Vorschläge zur Ableitung der Richtwerte I und II vorgelegt. Dabei wird der gegenwärtige Stand der Diskussion im Ausschuss für Innenraumrichtwerte (AIR) aufgegriffen. Die abschließende Bewertung und Ableitung von Richtwerten ist jedoch dem AIR vorbehalten. Quelle: Forschungsbericht
Origin | Count |
---|---|
Bund | 83 |
Land | 5 |
Type | Count |
---|---|
Förderprogramm | 65 |
Text | 14 |
Umweltprüfung | 1 |
unbekannt | 6 |
License | Count |
---|---|
closed | 6 |
open | 68 |
unknown | 12 |
Language | Count |
---|---|
Deutsch | 85 |
Englisch | 13 |
Resource type | Count |
---|---|
Archiv | 8 |
Datei | 8 |
Dokument | 14 |
Keine | 48 |
Webseite | 26 |
Topic | Count |
---|---|
Boden | 68 |
Lebewesen & Lebensräume | 71 |
Luft | 50 |
Mensch & Umwelt | 86 |
Wasser | 55 |
Weitere | 81 |