technologyComment of adipic acid production (RER, RoW): This dataset models the production of adipic acid by nitric acid oxidation of a mixture of cyclohexanol and cyclohexanone, which is obtained by oxidation of cyclohexane. Abatement of N2O emissions is assumed to reduce the emissions by 80%. Essentially all production of adipic acid is derived from the nitric acid oxidation of a mixture of cyclohexanone – cyclohexanol (KA mixture). The reactor, controlled at 60 – 80 °C and 0.1 – 0.4 MPa, is charged with the recycled nitric acid stream, the KA feed material, and makeup acid containing 50 – 60 % nitric acid and copper – vanadium catalyst. The reaction is very exothermic (6.280 MJ/kg). Adipic acid is obtained with a yield greater than 90%. Nitrogen oxides, carbon dioxide, and some lower dicarboxylic acids are the major by-products, as well as oxidation products arising from impurities in the KA intermediate. The nitric acid oxidation step produces three major waste streams: an off-gas containing oxides of nitrogen and CO2, water containing traces of nitric acid and organics from the water removal column; and a dibasic acid purge stream containing adipic, glutaric and succinic acids. The production of adipic acid can be represented by the following simplified reaction formula: 0.733 C6H12O + 0.367 C6H10O + 2 HNO3 -> C6H10O4 + N2O + 2 H2O + 7.23 H2 References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH.
Production mix technologyComment of decarboxylative cyclization of adipic acid (RER): decarboxylative cyclization of adipic acid technologyComment of formic acid production, methyl formate route (RER): The worldwide installed capacity for producing formic acid was about 330 000 t/a in 1988. Synthesis of formic acid by hydrolysis of methyl formate is based on a two-stage process: in the first stage, methanol is carbonylated with carbon monoxide; in the second stage, methyl formate is hydrolyzed to formic acid and methanol. The methanol is returned to the first stage. Although the carbonylation of methanol is relatively problem-free and has been carried out industrially for a long time, only recently has the hydrolysis of methyl formate been developed into an economically feasible process. The main problems are associated with work-up of the hydrolysis mixture. Because of the unfavorable position of the equilibrium, reesterification of methanol and formic acid to methyl formate occurs rapidly during the separation of unreacted methyl formate. Problems also arise in the selection of sufficiently corrosion-resistant materials Carbonylation of Methanol In the two processes mentioned, the first stage involves carbonylation of methanol in the liquid phase with carbon monoxide, in the presence of a basic catalyst: imageUrlTagReplacea0ec6e15-92c8-4d44-82bb-84e90e58b171 As a rule, the catalyst is sodium methoxide. Potassium methoxide has also been proposed as a catalyst; it is more soluble in methyl formate and gives a higher reaction rate. Although fairly high pressures were initially preferred, carbonylation is carried out in new plants at lower pressure. Under these conditions, reaction temperature and catalyst concentration must be increased to achieve acceptable conversion. According to published data, ca. 4.5 MPa, 80 °C, and 2.5 wt % sodium methoxide are employed. About 95 % carbon monoxide, but only about 30 % methanol, is converted under these circumstances. Nearly quantitative conversion of methanol to methyl formate can, nevertheless, be achieved by recycling the unreacted methanol. The carbonylation of methanol is an equilibrium reaction. The reaction rate can be raised by increasing the temperature, the carbon monoxide partial pressure, the catalyst concentration, and the interface between gas and liquid. To synthesize methyl formate, gas mixtures with a low proportion of carbon monoxide must first be concentrated. In a side reaction, sodium methoxide reacts with methyl formate to form sodium formate and dimethyl ether, and becomes inactivated. The substances used must be anhydrous; otherwise, sodium formate is precipitated to an increasing extent. Sodium formate is considerably less soluble in methyl formate than in methanol. The risk of encrustation and blockage due to precipitation of sodium formate can be reduced by adding poly(ethylene glycol). The carbon monoxide used must contain only a small amount of carbon dioxide; otherwise, the catalytically inactive carbonate is precipitated. Basic catalysts may reverse the reaction, and methyl formate decomposes into methanol and carbon monoxide. Therefore, undecomposed sodium methoxide in the methyl formate must be neutralized. Hydrolysis of Methyl Formate In the second stage, the methyl formate obtained is hydrolyzed: imageUrlTagReplace2ddc19c0-905f-42c3-b14c-e68332befec9 The equilibrium constant for methyl formate hydrolysis depends on the water: ester ratio. With a molar ratio of 1, the constant is 0.14, but with a water: methyl formate molar ratio of 15, it is 0.24. Because of the unfavorable position of this equilibrium, a large excess of either water or methyl formate must be used to obtain an economically worthwhile methyl formate conversion. If methyl formate and water are used in a molar ratio of 1 : 1, the conversion is only 30 %, but if the molar ratio of water to methyl formate is increased to 5 – 6, the conversion of methyl formate rises to 60 %. However, a dilute aqueous solution of formic acid is obtained this way, and excess water must be removed from the formic acid with the expenditure of as little energy as possible. Another way to overcome the unfavorable position of the equilibrium is to hydrolyze methyl formate in the presence of a tertiary amine, e.g., 1-(n-pentyl)imidazole. The base forms a salt-like compound with formic acid; therefore, the concentration of free formic acid decreases and the hydrolysis equilibrium is shifted in the direction of products. In a subsequent step formic acid can be distilled from the base without decomposition. A two-stage hydrolysis has been suggested, in which a water-soluble formamide is used in the second stage; this forms a salt-like compound with formic acid. It also shifts the equilibrium in the direction of formic acid. To keep undesirable reesterification as low as possible, the time of direct contact between methanol and formic acid must be as short as possible, and separation must be carried out at the lowest possible temperature. Introduction of methyl formate into the lower part of the column in which lower boiling methyl formate and methanol are separated from water and formic acid, has also been suggested. This largely prevents reesterification because of the excess methyl formate present in the critical region of the column. Dehydration of the Hydrolysis Mixture Formic acid is marketed in concentrations exceeding 85 wt %; therefore, dehydration of the hydrolysis mixture is an important step in the production of formic acid from methyl formate. For dehydration, the azeotropic point must be overcome. The concentration of formic acid in the azeotropic mixture increases if distillation is carried out under pressure, but the higher boiling point at high pressure also increases the decomposition rate of formic acid. At the same time, the selection of sufficiently corrosion-resistant materials presents considerable problems. A number of entrainers have been proposed for azeotropic distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html technologyComment of oxidation of butane (RER): The liquid-phase oxidation of hydrocarbons is an important process to produce acetic acid, formic acid or methyl acetate. About 43 kg of formic acid is produced per ton of acetic acid. Unreacted hydrocarbons, volatile neutral constituents, and water are separated first from the oxidation product. Formic acid is separated in the next column; azeotropic distillation is generally used for this purpose. The formic acid contains about 2 wt % acetic acid, 5 wt % water, and 3 wt % benzene. Formic acid with a content of about 98 wt % can be produced by further distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von IKA®-Werke GmbH & Co. KG durchgeführt. Ziel des Projektes ist die Erforschung einer Nutzung von Lignin und des Terpentinschnitts als signifikante Restströme der Zellstoffgewinnung zur elektrosynthetischen Herstellung von alkylierten Adipinsäuren. Diese Restströme werden heute hauptsächlich thermisch verwertet und stehen nicht in Konkurrenz als Nahrungsmittel. Die elektrochemische Umsetzung ist besonders nachhaltig, da keine Reagenzabfälle generiert werden und auch Elektrizitätsüberschüsse, welche auch in den Zellstoffwerken/Bioraffinerien anfallen, zum Einsatz kommen können. Mithilfe der Alkyladipinsäuren sollen neue Polyamide mit innovativen Eigenschaften erschlossen werden. Zur Realisierung bedarf es neuer elektrochemischer Flusszellen, welche die gewünschte Umsetzung ermöglichen und im Laborbereich für Kilogrammmengen skalierbar sind. Die geplanten Umsetzungen und Anwendungsfelder besitzen eine hohe technische Relevanz für Polymere und erlauben es bislang wenig stofflich genutzte Nebenströme gezielt zu erschließen. Eine Etablierung einer skalierbaren elektrosynthetischen Umsetzung wird angestrebt. Neben der teilweise aufgereinigten Ausgangsstoffe werden auch die Rohrestströme der Umsetzung unterworfen.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Evonik Resource Efficiency GmbH durchgeführt. Ziel des Projektes ist die Erforschung einer Nutzung von Lignin und des Terpentinschnitts als signifikante Restströme der Zellstoffgewinnung zur elektrosynthetischen Herstellung von alkylierten Adipinsäuren. Diese Restströme werden heute hauptsächlich thermisch verwertet und stehen nicht in Konkurrenz als Nahrungsmittel. Die elektrochemische Umsetzung ist besonders nachhaltig, da keine Reagenzabfälle generiert werden und auch Elektrizitätsüberschüsse, welche auch in den Zellstoffwerken/Bioraffnerien anfallen, zum Einsatz kommen können. Mithilfe der Alkyladipinsäuren sollen neue Polyamide mit innovativen Eigenschaften erschlossen werden. Zur Realisierung bedarf es neuer elektrochemischer Flusszellen, welche die gewünschte Umsetzung ermöglichen und im Laborbereich für Kilogrammmengen skalierbar sind. Die geplanten Umsetzungen und Anwendungsfelder besitzen eine hohe technische Relevanz für Polymere und erlauben es bislang wenig stofflich genutzte Nebenströme gezielt zu erschließen. Eine Etablierung einer skalierbaren elektrosynthetischen Umsetzung wird angestrebt. Neben der teilweise aufgereinigten Ausgangsstoffe werden auch die Rohrestströme der Umsetzung unterworfen.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Mainz, Institut für Organische Chemie durchgeführt. Ziel des Projektes ist die Erforschung einer Nutzung von Lignin und des Terpentinschnitts als signifikante Restströme der Zellstoffgewinnung zur elektrosynthetischen Herstellung von alkylierten Adipinsäuren. Diese Restströme werden heute hauptsächlich thermisch verwertet und stehen nicht in Konkurrenz als Nahrungsmittel. Die elektrochemische Umsetzung ist besonders nachhaltig, da keine Reagenzabfälle generiert werden und auch Elektrizitätsüberschüsse, welche auch in den Zellstoffwerken/Bioraffinerien anfallen, zum Einsatz kommen können. Mithilfe der Alkyladipinsäuren sollen neue Polyamide mit innovativen Eigenschaften erschlossen werden. Zur Realisierung bedarf es neuer elektrochemischer Flusszellen, welche die gewünschte Umsetzung ermöglichen und im Laborbereich für Kilogrammmengen skalierbar sind. Die geplanten Umsetzungen und Anwendungsfelder besitzen eine hohe technische Relevanz für Polymere und erlauben es bislang wenig stofflich genutzte Nebenströme gezielt zu erschließen. Eine Etablierung einer skalierbaren elektrosynthetischen Umsetzung wird angestrebt. Neben der teilweise aufgereinigten Ausgangsstoffe werden auch die Rohrestströme der Umsetzung unterworfen.
Das Projekt "ERA CoBioTech Call 2: MIPLACE - Integration von Plastik in die zirkuläre Bioökonomie mit Hilfe von Mikroorganismen" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Angewandte Mikrobiologie (Biologie IV) durchgeführt. Das Hauptziel von MIPLACE ist die Entwicklung eines effizienten biobasierten Prozesses, der Kunststoffabfälle als Ausgangsmaterial für die Herstellung von Molekülen von industriellem Interesse verwendet. In MIPLACE werden wir einen Ansatz verfolgen, um zwei Arten von Kunststoffpolymeren (Polyethylenterephthalat (PET) und Polyurethan (PU)) in das umweltfreundlichere Bio-PU als Bau- und Isoliermaterial zu verwandeln. Zu diesem Zweck werden wir mikrobielle Gemeinschaften nutzen. Das Standard-PU-Polymer besteht aus mehreren Monomeren, darunter Ethylenglykol (EG) und Terephthalsäure (TA), die auch die Bestandteile von PET sind. So ist es möglich, Hydrolysate von PET- und PU-Abfällen direkt für die Synthese von neuem PU zu nutzen. Unser biologischer Prozess wird es ermöglichen aus dem Plastikabfall auch andere Monomere herzustellen, die als Bausteine von PU verwendet werden können (z.B. HAAs, Adipinsäure (AA) und Butandiol (BDO)). MIPLACE wird also dazu beitragen, das Problem der Umweltverschmutzung mit Kunststoff zu mildern, indem es einen neuen Weg für die Verwendung von Kunststoffabfällen über die üblichen Recyclingverfahren hinaus eröffnet. In MIPLACE haben wir eine multidisziplinäre Strategie entwickelt, die auf der Nutzung mikrobieller Gemeinschaften für die effektive Umwandlung von PET und PU in Bio-PU basiert. Unser Workflow basiert auf dem traditionellen Design-Build-Test-Zyklus der Ingenieurdisziplinen. Wir werden eine Kombination aus Umweltscreening von Mikroorganismen, rationaler Stammentwicklung und laborgesteuerter Evolution verwenden, um dieses Ziel zu erreichen. Gleichzeitig werden wir uns mit den mit dieser Forschung verbundenen gesellschaftlichen Themen befassen, die sich auf die öffentliche Wahrnehmung des gewählten Ansatzes und die Möglichkeit der Beeinflussung von Veränderungen im Verbraucherverhalten beziehen.
Das Projekt "Bio-Nylon: Nachhaltige Produktion von Bio-Adipinsäure als Plattform-Chemikalie" wird vom Umweltbundesamt gefördert und von Universität des Saarlandes, Institut für Systembiotechnologie durchgeführt. Adipinsäure ist ein Rohstoff zur Herstellung von Nylon-6,6, ein Produkt mit einem Marktvolumen von mehreren Milliarden Euro. Im Rahmen dieses Projekts (Bio-Nylon) soll die nachhaltige Produktion von Bio-Adipinsäure mittels eines kombinierten biotechnologischen und chemischen Prozesses validiert werden. Herkömmliche Produktionsverfahren basieren auf fossilen Rohstoffen, haben einen erheblichen Energiebedarf und sind oftmals mit der Emission von unerwünschten Nebenprodukten wie dem Treibhausgas N2O verbunden. Auf Grundlage einer vergleichenden Ökobilanz (LCA, Life Cycle Assessment) konnte gezeigt werden, dass das neu entwickelte Konzept mit einer geringeren Umweltbelastung verbunden und dabei wirtschaftlich konkurrenzfähig zu den existierenden Verfahren ist (van Duuren JBJH 2011) - insbesondere dann, wenn das Abfallprodukt Lignin aus der Zellulose-Herstellung als Substrat genutzt werden kann. Die Produktion von Bio-Adipinsäure trägt durch den niedrigeren Energiebedarf und Ausstoß von Treibhausgasen sowie die Nutzung nachwachsender Rohstoffe zur Energiewende in Deutschland bei. Prozesstechnisch werden mittels Pyrolyse von Lignin entstandene Gemische kleiner aromatischer Verbindungen durch den Biokatalysator Pseudomonas putida KT2440-JD1 zu cis, cis-Muconat umgesetzt. Dieses lässt sich leicht zu Adipinsäure hydrogenieren. Eine neuartige Kultivierungsmethode für den Biokatalysator bietet darüber hinaus großes Optimierungspotential.
Das Projekt "Chemisches Recycling von PA 6.6-Teppichmaterial aus der Altautodemontage - Teilvorhaben 1" wird vom Umweltbundesamt gefördert und von Thüringisches Institut für Textil- und Kunststoff-Forschung Rudolstadt e.V. durchgeführt. Chemischer Abbau von nicht sortenreinem PA 6.6 Kunststoffteppichmaterial über reaktive Extrusion mit Adipinsäure zur Erlangung von Präpolymeren, welche in Extraktions- und Kristallisationsschritten gereinigt wird. Wiederaufbau des Präpolymeren zu Polyamid 6.6 im Polymersationspozess, Wiederverwertung PA 6.6 Teppichfaserabfälle zu PA 6.6 Polymer, geeignet zum Verspinnen und Spritzgießen. 2001-2002: reaktive Extrusion zu Depolymerisation, Extraktion, Kristallisation (diskontinuierlich), Labor- und Autoklavenversuche zur PA 6.6-Kondensation mit erlangtem AHA-Präpolymer, 2002-2003: technologische und ökonomische Bewertung von kontinuierlicher Vernetzung Extruder, Extruder und Kristallisation, Herstellung von Mustermengen an gereinigtem AHA-Prepolymer für PA 6.6 Hersteller, Spinnversuche und Spritzgusstests. Überführung der Versuchsergebnisse auf eine zu errichtende kontinuierliche kleintechnische Pilotanlage.
Das Projekt "C. glutamicum als Plattform-Organismus für neue und effiziente Produktionsverfahren (BioProChemBB) - Teilvorhaben 1: Konstruktion, Charakterisierung und Optimierung von Succinat-, Fumarat- und Malat-produzierenden C. glutamicum-Stämmen" wird vom Umweltbundesamt gefördert und von Universität Ulm, Institut für Mikrobiologie und Biotechnologie durchgeführt. Corynebacterium glutamicum wird seit Jahrzehnten erfolgreich für die biotechnologische Produktion von Aminosäuren eingesetzt. Aufgrund der nachgewiesenen Eignung für die großtechnische Produktion hat sich C. glutamicum zu einem wichtigen Modellorganismus in der Weißen Biotechnologie entwickelt. Das Gesamtvorhaben des ERA-IB-Projektes zielte darauf ab, C. glutamicum in iterativen Optimierungsverfahren für die Gewinnung von Grundchemikalien und Synthesebausteinen im Sinne der Weißen Biotechnologie aus nachwachsenden Rohstoffen zu nutzen und robuste sowie kostensparende Fermentations- und 'Downstream processsing'-Verfahren zu entwickeln. Dabei standen die Produkte Succinat, Fumarat, Malat, Aspartat und Itaconat im Projektfokus. Das Ziel des Teilprojektes 1 war die Konstruktion, Analyse und iterative Optimierung von C. glutamicum-Stämmen, die mit hoher Ausbeute und hoher Produktionsrate Succinat, Fumarat und/oder Malat (bzw. deren Säuren) aus nachwachsenden Rohstoffen (Zucker) produzieren. Die zentrale Vorstufe aller drei Säuren im Zentralstoffwechsel von C. glutamicum ist Pyruvat, selbst ein attraktives Produkt als Vorstufe verschiedener Chemikalien und Polymere sowie als Bestandteil oder Zusatz in Nahrungsmitteln, Kosmetika und Pharmazeutika. Aus diesem Grund sollte auch zunächst ein C. glutamicum-Stamm entwickelt und analysiert werden, der effizient Pyruvat bildet. Succinat ist eine Plattform-Chemikalie, aus der eine Reihe bisher petrochemisch hergestellter Bulk'-Chemikalien synthetisiert werden können, wie z.B. 1,4-Butandiol, Tetrahydrofuran, Adipinsäure, g-Butyrolacton oder lineare aliphatische Esther. Fumarat wird in der Nahrungsmittelindustrie und als Ausgangsverbindung für Polymerisierungs- und Estherifizierungsreaktionen genutzt, Malat wird in der pharmazeutischen Industrie, in der Kosmetik- und in der Nahrungsmittelindustrie eingesetzt und wird wie Succinat und Fumarat als vielversprechender chemische Grundbaustein für Plattformchemikalien angesehen
Distickstoffoxid-Emissionen Distickstoffoxid ist ein bedeutendes Klimagas. 1990 hatten die Distickstoffoxid-Emissionen einen Anteil von 4,1 % an den gesamten THG-Emissionen in CO₂-Äquivalenten. 2023 lag der Anteil immer noch bei 3,2 %. Zwischen 1990 und 2000 sanken die Emissionen und stagnierten dann bis 2009. Die Jahre ab 2010 zeigen ein deutlich geringeres Niveau und in den letzten Jahren einen rückläufigen Trend. Entwicklung in Deutschland seit 1990 Im Rahmen der Klimarahmenkonvention haben die Vertragsstaaten Maßnahmen zu ergreifen, um die Distickstoffoxid-Emissionen zu verringern (siehe “Klimarahmenkonvention“ ). 1990 betrugen die Distickstoffoxid (N 2 O)-Emissionen 188 Tausend Tonnen (Tsd. t). Im Zeitraum bis 1999 gingen sie um ca. ein Drittel zurück (siehe Abb. „Distickstoffoxid-Emissionen nach Kategorien“). Der Rückgang wurde zu zwei Dritteln durch emissionsmindernde Maßnahmen im Bereich der Adipinsäureproduktion (Grundstoff bei der Kunststoffherstellung) erreicht. Zudem veränderte sich die Landwirtschaft in den neuen Ländern. Bei rückläufigen Tierbeständen wurden weniger tierische Abfälle als Wirtschaftsdünger eingesetzt. Flächen wurden in großem Umfang stillgelegt, deshalb mussten weniger mineralische Stickstoffdünger eingesetzt werden. Im Jahr 2010 führte eine gezielte technische Minderung der Emissionen einer Chemieanlage zu einem starken und dauerhaften Rückgang. In den Jahren 2011 bis 2017 fluktuierten die Emissionen leicht um 100 Tsd. t pro Jahr, in den Folgejahren ist eine sukzessive Reduktion auf 82 Tsd. t. im Jahr 2023 zu beobachten. (siehe Tab. „Emissionen ausgewählter Treibhausgase nach Kategorien“). Distickstoffoxid-Emissionen nach Kategorien Quelle: Umweltbundesamt Diagramm als PDF Tab: Emissionen ausgewählter Treibhausgase nach Kategorien Quelle: Umweltbundesamt Tabelle als PDF zur vergrößerten Darstellung Verursacher von Distickstoffoxid-Emissionen Hauptquellen für Distickstoffoxid-Emissionen sind stickstoffhaltiger Dünger in der Landwirtschaft und die landwirtschaftliche Tierhaltung. Nach kleinen Rückgängen in den Jahren 1990 bis 1994 stagnierten die Emissionen der Landwirtschaft bei ca. 70-76 Tausend Tonnen Distickstoffoxid jährlich und fallen erst ab 2018 sukzessive ab. Im Jahr 2023 machten sie 74 % der gesamten Distickstoffoxid-Emissionen aus. Weitere Quellen sind die Industrieprozesse in der chemischen Industrie: Bis 1997 hatte die industrielle Produktion von Adipinsäure – einem Grundstoff bei der Kunststoffherstellung, für Lösemittel und Weichmacher – mit knapp einem Drittel einen wesentlichen Anteil an den Distickstoffoxid-Emissionen, der jedoch bis 2017 stufenweise auf ca. wenige Prozent schrumpfte. Geringere Emissionen entstehen auch durch stationäre und mobile Verbrennungsprozesse, durch die Abwasserbehandlung und durch den direkten Einsatz von Distickstoffoxid (zum Beispiel als Narkosemittel). Seit 1999 wird die Emissionsentwicklung stark von der Emissionsentwicklung in der chemischen Industrie beeinflusst