API src

Found 548 results.

Related terms

Steroid hormones in the aquatic environment - Insights from new analytical methods for corticosteroids and progestogens

Endocrine active substances such as steroid hormones gain increasing focus in environmental research as they cause endocrine disruption in aquatic organisms exposed to environmentally relevant concentrations. Data about occurrence and fate of steroid hormones are scare. Based on the recently published method ( FKZ 3715 67 413 ) the occurrence of 60 steroids in wastewater treatment plant effluents and surface waters were reported. To understand stability and degradation pathways, degradation studies were conducted that allowed comparability of transformation processes under standardised aerobic conditions. Several of the newly identified transformation products are persistent and some of them could be detected in wastewater treatment plant effluent and surface waters. Steroid hormones and their transformation products should be included more in future environmental measurements and studies. During the project 3 articles have been published: Weizel et al. 2018 ( https://doi.org/10.1021/acs.est.7b06147 ), Weizel et al. 2020a ( https://doi.org/10.1016/j.watres.2020.115561 ), Weizel et al. 2020b https://doi.org/10.1016/j.watres.2020.116515 ) Veröffentlicht in Texte | 95/2022.

Steroid hormones in the aquatic environment - insights from new analytical methods for corticosteroids and progestogens

Endokrin aktive Substanzen wie Steroidhormone stehen vermehrt im Interesse der Umweltwissenschaften, da endokrine Effekte in Wasserorganismen bereits bei sehr niedrigen Umweltkonzentrationen beschrieben sind. Allerdings ist die Datenlage über das Vorkommen und das Verhalten von Steroidhormonen in der Umwelt sehr lückenhaft. In dieser Studie wurde das Vorkommen von ca. 60 Steroiden im Kläranlagenablauf und in Oberflächengewässern untersucht. Des Weiteren wurde das Verhalten und die Bioabbaubarkeit von Corticosteroiden und Progestagenen, die beide hohe Verschreibungszahlen und ein hohes endokrines Potential aufweisen, während einer Aktivschlammbehandlung betrachtet. Zu diesem Zweck wurde eine Analysenmethode für die simultane Bestimmung von Mineralcorticoiden, Glukokortikoiden und Progestagenen in wässrigen Proben entwickelt. Mit Hilfe dieser Methode konnten drei Mineralcorticoide, 23 Glukokortikoide und 10 Progestagene in den analysierten Proben nachgewiesen werden. Viele der Substanzen wurden zum ersten Mal in der Umwelt, insbesondere in Deutschland und der EU, nachgewiesen. Die Abbaustudien wurden so konzipiert, dass diese einen strukturabhängigen Vergleich der Abbaubarkeit und der Transformationsprozesse unter standardisierten aeroben Bedingungen ermöglichten. Halbwertzeiten reichten von <0,5 Stunden bis >14 Tagen, was die große Bandbreite in der Stabilität innerhalb der untersuchten Steroide verdeutlicht. Die entstandenen Transformationsprodukte wurden mittels LC-HRMS identifiziert und entsprechende Abbauwege postuliert. Basierend auf diesen Ergebnissen wurden Zusammenhänge zwischen der Stabilität der Substanzen und deren Molekülstruktur ausgearbeitet. Viele der neu identifizierten Transformationsprodukte waren persistent und manche von ihnen konnten im Kläranlagenablauf und in Oberflächengewässern nachgewiesen werden. Daher sollten Transformationsprodukte in zukünftige Umweltstudien mit einbezogen werden. Quelle: Forschungsbericht

Teilprojekt 6: LCA

Das Projekt "Teilprojekt 6: LCA" wird vom Umweltbundesamt gefördert und von DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V. durchgeführt. TRANSFORMATE nutzt die effizientesten Prozesse, um CO2 in Wertprodukte umzuwandeln. Dabei wird CO2 in einem ersten Schritt durch elektrochemische Konversion zu Ameisensäure reduziert. Im zweiten Schritt wird dann die Ameisensäure in einen Bioreaktor eingespeist, wo Ameisensäure-verstoffwechselnde Mikroorganismen die Ameisensäure hoch selektiv in Spezialchemikalien umwandeln. Projektziele: 1. Optimierung der kathodischen CO2-Reduktion zu Ameisensäure bei gleichzeitiger Kopplung mit der Wasser-Oxidation. Wir werden Membran-Elektroden-Einheiten (MEAs) mit polymeren Ionischen Flüssigkeiten (PILs) als Mediator in der katalytischen Schicht entwickeln. PILs eröffnen die Möglichkeit, die Produktionsrate und die Effizienz der CO2-Reduktion bei niedrigen pH-Werten und niedrigen Salzfrachten zu steigern. Wir werden innerhalb des Konsortiums eine spaltlose Elektrolyseur-Zelle, einen Stack-Prototypen bauen und eine Produktionsstrategie für das Scale-up der Stacks aufstellen. 2. Design und Konstruktion eines Ralstonia eutropha-Stamms mit hoch-effizienter Ameisensäure-Assimilation und Produktion von Biopolymeren und Crotonsäure. Wir werden das Bakterium R. eutropha durch die Integration des synthetischen, reduzierten Glycin-Stoffwechselwegs (rGlyP; effizientester Stoffwechselweg für die aerobe Ameisensäure-Assimilation) dazu befähigen, auf Ameisensäure zu wachsen. Darüber hinaus werden zwei Produktionsstämme konstruiert, die 1. Polyhydroxybuttersäure (PHB) in den Zellen akkumulieren und 2. Crotonsäure ins Medium sezernieren. 3. Integration des elektrochemischen und mikrobiellen Systems und Optimierung des Gesamtprozesses. Wir werden die Prototypen der CO2-Elektrolyseure direkt mit Labor-Bioreaktoren (2L) verbinden, um so das Gesamtsystem zu integrieren und im Betrieb zu untersuchen. Parallel dazu laufen LCA und TEA, um die Wirtschaftlichkeit und Ökobilanz des Gesamtsystems zu bilanzieren und so gezielt die kritischen Stellschrauben des Systems zu erkennen.

Die Bildung von Methan in marinen Algen

Das Projekt "Die Bildung von Methan in marinen Algen" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Geowissenschaften durchgeführt. Methan (CH4), das zweitwichtigste anthropogene Treibhausgas nach CO2, ist die häufigste reduzierte organische Verbindung in der Atmosphäre und spielt eine zentrale Rolle in der Atmosphärenchemie. Das globale atmosphärische Methanbudget wird von vielen natürlichen und anthropogenen terrestrischen und aquatischen Quellen bestimmt. Bis vor kurzem wurden alle biologischen Methanquellen der Tätigkeit von Mikroben zugeschrieben, die unter Sauerstoffausschluss (anaerob) beim Abbau von organischem Material CH4 produzieren wie z.B. in Feuchtgebieten, im Verdauungstrakt von Termiten und bei Wiederkäuern, und beim Abbau menschlicher und landwirtschaftliche Abfälle. Allerdings zeigen neuere Studien, dass die terrestrische Vegetation, Pilze und Säugetiere auch CH4 produzieren, und das ohne die Hilfe von Mikroben (Archaeen) und unter aeroben Bedingungen. Die Ozeane werden als Quellen von atmosphärischen CH4 betrachtet, obwohl der Betrag der Gesamtnettoemissionen sehr unsicher ist und die Quellen bisher nur unzureichend beschrieben sind. Um die Quelle des CH4 in den sauerstoffreichen oberen Wasserschichten zu erklären, wurde bisher meist vorgeschlagen, dass die CH4-Bildung in anoxischen Mikroumgebungen abläuft. In der Vergangenheit wurden aber auch schon andere Quellen genannt, wie die direkte in-situ-Bildung von CH4 in Algen. Allerdings steht ein direkter Nachweis einer CH4-Bildung aus Algen in Laborexperimenten mit axenischen Algenkulturen bisher noch aus, weshalb die direkte CH4-Bildung in Algen bisher nicht als ernsthafte Erklärung für die erhöhten Methankonzentrationen in den oberen Wasserschichten herangezogen wurde. Das Gesamtziel des Forschungsvorhabens ist der Nachweis (proof of principle) und die Quantifizierung der CH4-Bildung durch verschiedene Arten von Meeresalgen wie Kalkalgen (z.B. Emiliania huxleyi). Potentielle Vorläufersubstanzen, wie z. B. Methyl Sulfide und Methyl Sulfoxide, die im Metabolismus der Algen eine wichtige Rolle spielen, sollen mittels stabiler Isotopen-Techniken identifiziert werden. Verschiedene Umweltfaktoren wie z.B. Temperatur, Sauerstoffgehalt und Nährstoffverfügbarkeit werden im Hinblick auf ihren Einfluss auf die Methanbildung in marinen Algen untersucht. Zusätzlich werden verschiedene mikrobiologische Tests durchgeführt um die Beteiligung von Archaeen an der CH4-Bildung zu ermitteln (ein- oder auszuschließen). Ein interdisziplinärer biogeochemischer Ansatz (u.a. Kooperation mit mehreren Forschungsinstitutionen) ist erforderlich um die Ziele des Projekts zu realisieren. Die Ergebnisse sollen dazu beitragen unser Verständnis bezüglich des biogeochemischen Kreislaufs von CH4 in den Meeren zu verbessern und einen besseren Ansatz zur Lösung des so genannten 'ozeanisches Methan Paradox' zu liefern.

Technology for treatment and recycling of the water used to wash olives

Das Projekt "Technology for treatment and recycling of the water used to wash olives" wird vom Umweltbundesamt gefördert und von ARGUS - Umweltbiotechnologie GmbH durchgeführt. The present project aims to create an affordable and compact system capable of recovering and recycling the majority of the drinkable water used in the washing of the olives. The proposed treatment for recycling the most part of the water will follow three basic steps: 1) Preliminary aerobic treatment: the treatment will be conveniently implemented before the ultrafiltration unit (or integrated with the ultrafiltration unit in the same apparatus), in order to reduce the content of the organic compounds. 2) Ultrafiltration: this stage purifies the waste stream from all of the suspended solids. A factor of volumetric concentration of 10 is foreseen; removal of 100percent of the suspended solids and colloids, of 33percent of COD, of 50percent of the fatty substances. Turbidity of the filtrated liquid smaller 1 NTU is also expected. 3) Reverse Osmosis: for the concentration of saline and organic components that were passed into the permeate in first stage and that are found in solution. The total treatment will allow for the procurement of: - Drinkable water, to be used again for the washing of olives in loco (more than 90percent of the residual is expected to be recycled); - A relatively small amount of a polluting solution (i.e. with high concentration of pollutants and with the characteristics of vegetation water), to be sent to disposal mixed with vegetation water. The UDOR project will be structured in 4 phases: 1) Identification of requirements and definition of specifications, determined by the end-users, by analysing the generic EU producers situation and by characterising samples from different production sites. 2) Laboratory work on the aerobic treatment, the ultrafiltration and reverse osmosis operations: the three principal steps will be studied in the lab to determine the process to be applied, the equipment to be used and the most favourable operative conditions to reach the foreseen specifications. 3) Design and development of the pilot plant: the pilot plant will be designed and developed on the basis of the results of lab tests performed. 4) Installation and Field tests: the plant will be installed in an oil mill, in order to be tested in site and to evaluate the results of the technology with regard to a real production streams. The UDOR system, if applied to all EU oil production sites, is projected to save about 4 billions of litres of drinkable water per year. The system would clearly have a significant impact in Europe, especially in Mediterranean countries. The significant advantages for oil producers will be: - Reduction of costs, by reducing the amount of water to be disposed and reducing the cost of disposal. - Compliance with new regulations in waste water treatment to be applied in agriculture.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Scholz und Partner GmbH durchgeführt. Denitrifikation mittels Brennstoffzelle im Verband mit konventioneller Kläranlage.

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Institut für Automation und Kommunikation e.V. durchgeführt. Die Gemeinde Hille gehört zu den größten Flächengemeinden Deutschlands und verfügt bisher über ein zentrales Klärwerk. Für neue Flächennutzungspläne und Baugebiete möchte die Gemeinde ein neues Abwasserkonzept, das die hohen Infrastrukturkosten der großen Fläche mindert. Da die Gemeinde außerdem ein Naherholungsgebiet ist und über ein Wasserschutz­gebiet, in dem ein empfindliches Moor gelegen ist, verfügt, muss sichergestellt sein, dass das gereinigte Abwasser höchsten Anforderungen genügt. Im Rahmen dieses Vorhabens soll für die Gemeinde Hille als Modellregion ein dezentrales Kon­zept (ca. 200 EW) entwickelt werden, das die Abwasserreinigung mit der Nährstoff- und Ener­gie(rück)gewinnung verbindet, technisch nicht zu aufwändig ist und den Gedanken nachhaltigen Wirtschaftens konsequent verfolgt. Es sollen mit Hilfe von planerischen Instrumenten, Pilot­anlagen, Laborversuchen und dynamischen Simulationsverfahren alle Voraussetzungen erfüllt werden, um im Anschluss eine großtechnische Anlage in der Modellregion Hille zu realisieren.

Teilprojekt B 04: Die Rolle der Pilze bei Entwicklung und Abbau von Schilf

Das Projekt "Teilprojekt B 04: Die Rolle der Pilze bei Entwicklung und Abbau von Schilf" wird vom Umweltbundesamt gefördert und von Universität Konstanz, Mathematisch- Naturwissenschaftliche Sektion, Fachbereich Biologie durchgeführt. Eine umfassende Analyse der mit Schilf (Phragmites australis) assoziierten Pilze und Oomyceten hat gezeigt, dass nur wenige Arten regelmäßig in den Pflanzen nachweisbar sind, während die überwiegende Mehrzahl nur sporadisch auftritt. Symbiontische Mykorrhiza-Pilze kommen nur auf trockeneren Standorten vor, während endophytische Ascomyceten mit ähnlichen Aufgaben auf überschwemmten Schilf-Standorten überwiegen. Ein neu beschriebener, weitverbreiteter Oomycet aus der Gattung Pythium, P. phragmitis, ist hochaggressiv gegenüber Schilf, und kann offenbar hauptsächlich unter dem Einfluß von Hochwasser zu Schäden führen. Ein nah verwandtes Pathogen aus derselben Gattung, P. arrhenomanes, das möglicherweise mit landwirtschaftlichen Kulturen (Mais) eingeführt wurde, scheint mit dem Schilfpathogen zu hybridisieren. Dies hat offenbar zur Entstehung einer weiteren Art mit möglicherweise völlig neuen Wirtsspektren geführt. In diesem Zusammenhang ergeben sich einige neue Fragestellungen, die im Rahmen des Projektes beantwortet werden sollen. Zunächst soll der Frage nach der Verbreitung des neuen Schilfpathogens Pythium phragmitis und möglicher Antagonisten nachgegangen werden. Von Interesse ist hierbei insbesondere eine quantitative Analyse der Epidemiologie und saisonalen Dynamik von P. phragmitis. Molekulargenetische Untersuchungen sollen den Nachweis einer natürlichen Hybridisierung zwischen nah verwandten Pythium spp. ermöglichen. Ferner soll untersucht werden, ob durch diese Hybrid-Bildung möglicherweise ein neues, aggressives Pathogen mit völlig neuem Wirtskreis (landwirtschaftliche Nutzpflanzen) entstanden ist.

Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor

Das Projekt "Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Abwasserwirtschaft und Gewässerschutz B-2 durchgeführt. In ecological sanitation, the wastewater is considered not only as a pollutant, but also as a resource for fertiliser, water and energy and for closing water and nutrients cycles (Otterpohl et. al., 1999; Otterpohl et. al., 2003; Elmitwalli et al. 2005). The ecological sanitation based on separation between grey and black water (and even between faeces and urine), is considered a visible future solution for wastewater collection and treatment. Grey water, which symbolises the wastewater generated in the household excluding toilet wastewater (black water), represents the major volume of the domestic wastewater (60- 75 percent) with low content of nutrients and pathogens (Otterpohl et. al., 1999; Jefferson et al., 1999; Eriksson et al., 2002). Most of grey-water treatment plants include one or two-step septic-tank for pre-treatment (Otterpohl et al., 2003). The grey-water treatment needs both physical and biological processes for removal of particles, dissolved organic-matters and pathogens (Jefferson et al., 1999). Recently, many researchers have studied the grey-water treatment either by application of high-rate aerobic systems, like rotating biological contactor (Nolde, 1999), fluidised bed (Nolde, 1999), aerobic filter (Jefferson et al., 2000), membrane bioreactor (Jefferson et al., 2000), or by application of low-rate systems, like slow sand filter (Jefferson et al., 1999), vertical flow wetlands (Otterpohl et. al., 2003). Although high-rate anaerobic systems, which are low-cost systems, have both physical and biological removal, no research has been done until now on grey water in these systems. The grey water contains a significant amount (41 percent) of chemical oxygen demand (COD) in the domestic wastewater (Otterpohl et al., 2003) and this amount can be removed by the highrate anaerobic systems. Although high-rate anaerobic systems have been successfully operated in tropical regions for domestic wastewater treatment, the process up till now is not applied in lowtemperature regions. The COD removal is limited for domestic wastewater treatment in high-rate anaerobic systems at low temperatures and, therefore, a long HRT is needed for providing sufficient hydrolysis of particulate organic (Zeeman and Lettinga, 1999; Elmitwalli et al. 2002). The grey water has a relatively higher temperature (18-38 degree C), as compared to the domestic wastewater (Eriksson et al. 2002), because the grey water originates from hot water sources, like shower (29 degree C), kitchen (27-38 degree C) and laundry (28-32 degree C). Therefore, high-rate anaerobic systems might run efficiently for on-site grey water treatment, even in low-temperature regions. The upflow anaerobic sludge blanket (UASB) reactor is the most applied system for anaerobic domestic waster treatment. Accordingly, the aim of this research is to study the feasibility of application of UASB reactor for the treatment of grey water at low and controlled (30 degree C) temperatures.

Einfluss von Stickstoffduengung, pH-Wert, Bodenbearbeitung und Landnutzung auf die Oxidation von Methan im Boden

Das Projekt "Einfluss von Stickstoffduengung, pH-Wert, Bodenbearbeitung und Landnutzung auf die Oxidation von Methan im Boden" wird vom Umweltbundesamt gefördert und von Universität Gießen, Fachbereich 19 Ernährungs- und Haushaltswissenschaften, Institut für Pflanzenernährung durchgeführt. Methan ist das zweitwichtigste Treibhausgas nach dem CO2 und traegt zu etwa 20 Prozent zur globalen Erwaermung bei. Aerobe Boeden sind biologische Senken fuer atmosphaerisches CH4, da es dort durch methanotrophe Bakterien oxidiert und somit abgebaut wird. Es gibt viele Hinweise dafuer, dass dieser Abbau durch die Landbewirtschaftung beeinflusst wird. Auf einem Gruenlandboden wurde ein deutlicher Langzeiteffekt der Stickstoffduengung festgestellt, wobei NH4(+) die CH4-Oxidation vollstaendig hemmte und NO3(-) keinen Einfluss ausuebte (Huetsch et al. 1994). Auch von frisch appliziertem NH4(+) ging unmittelbar ein hemmender Effekt aus (Huetsch et al. 1996). Versauerung von Ackerboeden mit neutralem pH-Wert verursachte eine starke Hemmung der CH4-Oxidation. Ziel der Untersuchungen ist die Identifikation der wichtigsten Einflussfaktoren, um durch gezielte Massnahmen den Boden als CH4-Senke zu erhalten bzw. auszubauen.

1 2 3 4 553 54 55