API src

Found 35 results.

Related terms

OBS stations of the GEOSTOR project in the German Bight and in the German Baltic Sea (WMS)

The dataset includes the locations of OBS stations (Ocean Bottom Seismometers) operated in the German Bight during cruise MSM100 with R.V. Maria S. Merian. The time interval from 13.05.2021 to 15.05.2021 has been analysed in a phase without airgun operation for passive recording with 4.5 Hz geophones. Furthermore, the dataset contains locations of 3 broadband OBS systems which were operated during an experiment at the Darss ramp in the German Baltic Sea. The records were analysed in the time interval 23.01.2018 to 01.04.2018.

OBS stations of the GEOSTOR project in the German Bight and in the German Baltic Sea

The dataset includes the locations of OBS stations (Ocean Bottom Seismometers) operated in the German Bight during cruise MSM100 with R.V. Maria S. Merian. The time interval from 13.05.2021 to 15.05.2021 has been analysed in a phase without airgun operation for passive recording with 4.5 Hz geophones. Furthermore, the dataset contains locations of 3 broadband OBS systems which were operated during an experiment at the Darss ramp in the German Baltic Sea. The records were analysed in the time interval 23.01.2018 to 01.04.2018.

Processed seismic data of Cruise SO186 SeaCause II 2006

SeaCause cruise SO186-2, aboard the RV Sonne, was carried out off northern Sumatra between 21st January and 24th February 2006, with mobilisation and demobilisation in Singapore and Penang, Malaysia, respectively. The geophysical survey acquired multichannel seismic data (MCS) using a 240 channel, 3 km Sercel streamer, and a tuned airgun array comprising 16 airguns with a total capacity of 50.8 litres. Bathymetry data, using the 12 kHz Simrad swath system, subseabed data using the hull mounted high resolution Parasound profiler together with gravity and magnetic data were also acquired. The main scientific objective of the survey was to investigate the southern part of the rupture zone of the 26th December 2004 9.3 magnitude earthquake, that caused the catastrophic tsunami of that date, and the rupture zone of the 8.7 magnitude earthquake of March 28th 2005. Specifically, to identify the segment boundary between the two earthquakes, as recognised by the distribution of their aftershocks. This was to be achieved by mapping the structure of the subduction zone including the dip angle of the subducted plate, the architecture of the accretionary prism and the structure of the forearc basins, particularly their strike-slip fault systems. Also to be investigated was whether there was a contribution to the 2004 tsunami from major submarine failures. During the survey a total of 5358 line kilometres of MCS data were acquired, mainly on lines oriented orthogonal to the subduction zone and extending from the ocean basin across the trench and accretionary prism to the forearc basins offshore Sumatra. The orthogonal survey lines were located on average approximately 40 km apart. The survey was planned using the bathymetry from the HMS Scott, RV Natsushima and RV Sonne cruises carried out in 2004. The morphology of the trench and sediment thickness varies from north to south. In the north the trench is poorly defined with shallow seabed dip but with sediment thickness of ~3.5 secs (TWT). The seafloor dips increase southwards, but sediment thickness decreases to ~2.5 secs (TWT) off Nias. Both the ocean basin and trench sediments are dissected by numerous normal faults, oriented subparallel to the plate boundary, with many that penetrate the oceanic crust. In the south Fracture Zones were identified. The structure of the deformation front on the seaward margin of the accretionary prism is highly variable. While the younges main thrust are predominantly landward vergent there are examples for seaward verging thrusts. The frontal fold develops in some cases already in the french while in most cases the frontal fold is at the beginning of the accretionary wedge. At some locations there are large sediment slumps on the frontal thrusts, the slope angle of the prism varies between 6 to 15 degrees, an angle that explains the large scale slumping. The width of the accretionary prism is widest in the north of the area at 140 km and narrows southwards until in the vicinity of the islands it is 40 km. In the north and central parts of the survey area the passage from the deformation front landwards into the older prism is rapid and the seabed gradients steep. The dip of the oceanic crust remains low and there is an obvious twofold increase (6-7 seconds TWT) in the sediment thickness. The basal decollement of the thrusts at the deformation front is in the lower sediment layer overlying oceanic basement. This is traced northeastward. A possible explanation for the increase in thickness of the prism is therefore considered to be the formation of a thrust duplex. Perhaps this is due to the subducted sediment thickness. In this region the prism forms a plateau and the internal pattern of the uppermost sediments shows striking similarities to the trench fill. Offshore of Simeulue Island the prism structure changes and it forms the more usually seen taper. The offscraped sediment forms a thinner section, the thrusts are more steeply dipping. The dip of the subducted plate here is greater than in the north. Three forearc basins were surveyed. In the north the western margin of the Aceh Basin lies along the West Andaman Fault. Within the main basin the sediments are internally undeformed. Farther south in the Simeulue Basin the northern and central parts there are numerous, active steeply dipping faults. In southern part of the basin there is a transpressional fault similarly to the Mentawi Fault off southern Sumatra. There are notable ‘bright spots’ in the upper section that may indicate the presence of hydrocarbon gas. There are also widespread Bottom Simulating Reflectors indication the presence of gashydrates and there may be also one double BSR. At the southern end of the surveyed area the Nias Basin may be subdivided along its length into two parts by a northnorthwest to southsoutheast trending carbonate platform development. The basin has had a varying subsidence history, in the south the subsidence was completed before the northern part started.

Processed seismic data of Cruise BGR95 1995

The cruise BGR95 from 19th November to 28th December 1995 with M.S. AKADEMIK NEMCHINOV was designed to acquire new marine geophysical data for a better understanding of the geological processes and structural variations of the Cretaceous-aged oceanic crust of the Angola Basin in the South Atlantic regarding its reflectivity pattern, its shape of the basement surfaces and its crustal thickness. These evaluations were extended onshore to the ‘Damara Igneous Province’. The aim of this study was the investigation of the rift-related volcanic-magmatic processes accompanying the initial stage of the opening of the South Atlantic Ocean. The survey was a co-operation of BGR, Alfred Wegener Institute for Polar and Marine Research (AWI), GeoForschungsZentrum Potsdam, University of Göttingen and Johann Wolfgang Goethe-University Frankfurt/Main. The M.S. AKADEMIK NEMCHINOV generated the seismic signals by a tuned airgun array of 3260 cu.in. (= 53.4 l) together with two AWI owned large volume guns of 2 x 2000 cu.in. (= 65.6 l), recorded the MCS signals with a 3000 m streamer and controlled the shot releases for the ocean bottom hydrophones (OBH’s) and the onshore seismic stations (PEDAS). A total of 5,114 km of multichannel seismic reflection data in parallel with magnetic and gravity measurements have been collected onboard the M.S. AKADEMIK NEMCHINOV. 1069.4 km of the seismic work was done on 3 combined refraction/wide angle offshore and onshore traverses. The offshore part was recorded by 7 ocean bottom hydrophones (OBH) operated by the M.V. POLAR QUEEN (Reichert et al., 1996). The registration onshore Namibia was performed by 25 mobile seismic landstations (PEDAS) on each profile (Schulze et al., 1996). First results are described in the offshore and onshore reports of these investigations (Reichert et al., 1996, and Schulze et al., 1996). The data clearly show distinct series of the seaward dipping reflector sequences (SRDS) and isochronous variations in the accretion of the oceanic crust. The onshore and offshore registrations show deep arrivals from diving and refracted waves in a range up to 200 to 400 km.

Processed seismic data of Cruise SO189 SUMATRA 2006

The SUMATRA cruise SO189 Leg 1, aboard the RV SONNE, was carried out off Sumatra between 3rd August and 3rd September 2006, with mobilisation in Penang, Malaysia and demobilisation in Jakarta, Indonesia, respectively. The survey was dedicated to marine geophysical measurements and acquired multichannel seismic data (MCS) using a 240 channel streamer, and a tuned airgun array comprising 16 airguns with a total capacity of 50.8 litres. Bathymetry data, using the 12 kHz Simrad swath system, sub-seabed data using the hull mounted high resolution PARASOUND profiler together with gravity (G) and magnetic (M) data were also acquired. Along two lines with a total length of ~ 390 km refraction/wide-angle seismic experiments were carried out. During the survey a total of 4,375 line kilometres of MCS, M and G data were acquired and an additional 990 km with M and G alone. The 41 MCS lines cover as close grid three fore-arc basins. Five lines extend nearly orthogonal to the subduction front and, thus, cover the whole subduction system from the adjacent oceanic plate, the trench and accretionary prism over the Outer Arc High to the forearm basins offshore Sumatra. The survey was planned using the bathymetry from the HMS SCOTT, RV NATSUSHIMA, RV MARION DUFRESNE and RV SONNE cruises carried out in 2004, 2005 and 2006. The main scientific objective of the project SUMATRA is to determine or estimate the hydrocarbon (HC) system (source rocks, HC generation, HC migration and reservoir rocks) of the Sumatra fore-arc region (mainly the fore-arc basins). Cruise SO189 Leg 1 was designed to investigate the architecture, sedimentary thickness, sedimentary evolution and subsidence history of the fore-arc basins Siberut, Nias and Simeulue off Sumatra. In the Simeulue Basin it was possible to connect the seismic lines to three industry wells and to correlate the seismic horizons to the results from the wells. The Simeulue Basin is divided into a northern and southern sub-basin. Carbonate build-ups were found in the northern sub-basin only on the very shallow shelf in the north-east. The maximum thickness was determined to be ~ 3 s TWT. In the southern sub-basin carbonate build-ups (which were already identified on some lines of the SEACAUSE project), bright spots and Bottom Simulating Reflectors (BSRs) are wide spread. The narrowest basin surveyed was the Nias Basin. As the Simeulue Basin the Nias Basin is divided into two sub-basins which are separated by a structural high. Although the basin has a maximum width of only 55 km the maximum sediment thickness exceeds 5 s TWT. The largest fore-arc basin is the Siberut Basin. It extends from the equator to ~ 5°S over 550 km and has a maximum width of 140 km between the island of Siberut and Sumatra. The maximum sediment thickness in this basin is 4.8 s TWT. The basin geometry is uniform along its axis. At the basins termination on the western side to the Outer Arc High the Mentawai Fault Zone could be traced. The geometry of this major fault changes significantly along strike. In some areas it is traceable as one single fold whereas in other areas it spreads in up to three different branches indicating splay faults originating from a main fault. In the Siberut Basin BSRs are very wide spread and very good recognizable over the Mentawai Fault Zone. Along the Mentawai Fault and along the eastern rim of the basin the seismic data show strong indications for active venting. The morphology of the Sunda Trench and its sedimentary cover varies from north to south. In the north the trench is poorly defined with shallow seabed dip but with sediment thickness of ~ 3.5 s TWT. The seafloor dips increase southwards, but sediment thickness decreases to ~ 2.5 s TWT off Nias. Both the ocean basin and trench sediments are dissected by numerous normal faults with a maximum displacement of 0.6 s TWT. Along strike the deformation front between Nias and Siberut displays several incipient folds. As offshore northern Sumatra, both landward (BGR06-228) and seaward verging folds (BGR06-227) are developed at the deformation front. For the first time landward verging folds have now been imaged in this domain of the Sunda subduction zone. In contrary to first thoughts during the expedition SO186-2 SEACAUSE, landward verging folds are not limited to the area off Aceh. Two refraction lines were acquired parallel to the subduction front at 2°30'N and 1°30'S approximately 40 - 50 km seaward of Simeulue and Siberut Island, respectively. The lines were designed to identify the segment boundaries in the subduction system as well as to detect and decipher the subducted aseismic Investigator Ridge. The gravity data set consists now of over 38,000 line km (combining the GINCO, SEACAUSE I and II and the SUMATRA data). With this it was possible to compile a map of the free-air gravity from the northern tip of Sumatra (~ 6°30'N/95°E) to Mid Java( ~8°30'S/110°E). Gravity modelling in parallel with refraction seismic data interpretation was carried along two lines during the cruise. The preliminary results show that the incoming oceanic plate is unusual thin both in the north off Simeulue (6 km) and in the south off Nias (5 km).

Processed seismic data of Cruise BGR 1977

A geophysical reconnaissance survey was carried out in the Labrador Sea and Davis Strait between July and September 1977 by BGR. The data format is Society of Exploration Geophysicists SEG Y. The survey was executed on the research vessel MS Explora. The seismic, magnetic and gravity data from 5931 line-kilometers on 21 lines were recorded on magnetic tape. A 24-fold coverage technique was used with 48 seismic channels (traces), with a 2400m streamer cable, and 23.45 l airgun array. A full integrated computerized satellite navigation system (INDAS III) served as positioning system. Based on a preliminary interpretation of the seismograms, the Labrador Sea was devided into an eastern (Greenland) and western (Canadian) area, seperated by the Mid Labrador Ridge. Within the eastern part of the Labrador Sea the Pre-Cenozoic sediments show three distinct layers, traceable over the entire Greenland area of the sea. In the Cenozoic layer olisthostromes occur. The highest apparent velocity determined from sonobuoy data was 9.26 km/sec. The calculated refractor lies at a depth of approximately 13 km. The seismic section from the sediments on the Canadian side of the Labrador Sea show a uniform series of thick sediments below the Cenozoic cover. The highly disturbed basement is often masked by the multiple reflections from the seafloor. Statements about the nature and structure of the basement can only be made after processing data.

Am 1. Dezember ist Antarktis-Tag

Müll, Lärm und Klimawandel belasten zunehmend das sensible Ökosystem Die Antarktis ist ein Kontinent der Extreme: Kalt, rau und unwirtlich – dennoch wunderschön und sehr sensibel. Seit dem 1. Dezember 1959 steht die Antarktis daher unter besonderem Schutz: Damals unterzeichneten zwölf Staaten den Antarktis-Vertrag und legten ihre territorialen Ansprüche wortwörtlich ‚auf Eis‘; mitten im Kalten Krieg wurde die Antarktis zu einem Ort des Friedens und der Forschung. Maria Krautzberger, Präsidentin des Umweltbundesamtes (UBA): „Tourismus und Forschung nehmen in der Antarktis zu. Gerade in den stark genutzten Gebieten der Antarktis ist es besonders wichtig, hier regulierend und lenkend entgegenzuwirken. Nur so können wir Zivilisationsspuren, wie die ‚Vermüllung‘ und landschaftliche Zerstörung wirksam eindämmen.“ Alle von Deutschland ausgehenden Aktivitäten in der Antarktis muss das UBA genehmigen; egal ob diese touristischen Zwecken oder der Forschung dienen. Keine Frage: Die Forschung im ewigen Eis bringt wertvolle Erkenntnisse für die Bio-, Geo- und Klimaforschung. In Gebieten, in denen viele wissenschaftliche Stationen nah beieinander liegen, steigt aber der Druck auf die Umwelt: Besonders betroffen ist die Fildes-Halbinsel auf King George Island. Nur 800 km von Südamerika entfernt, ist sie vergleichsweise leicht zu erreichen. Dort besteht inzwischen die höchste Dichte von Forschungsstationen in der Antarktis. Da die Fildes-Halbinsel als eines der wenigen Gebiete in der Antarktis eisfrei ist, konzentriert sich dort im Südsommer, wenn auf der Nordhalbkugel Winter herrscht, auch das Leben der bekannten Seevogel- und Pinguinkolonien. Gleichzeitig ist die Fildes-Halbinsel mit ihrem Interkontinentalflughafen die logistische Drehscheibe nicht nur für die Polarforscher, sondern auch für Touristen. Um die sensible ⁠ Flora ⁠ und ⁠ Fauna ⁠ vor Ort noch besser zu schützen, setzt sich das ⁠ UBA ⁠ für anspruchsvolle internationale Richtlinien und Beschlüsse der Antarktisvertragsstaaten ein. Anders als die eher lokalen Umweltprobleme auf der Fildes-Halbinsel, breitet sich der Unterwasserlärm durch Schifffahrt und Forschung großräumig im Südozean aus. Sogenannte Airguns oder Luftpulser, die als Forschungsgeräte zur Erkundung des Meer-Untergrundes eingesetzt werden, können die Kommunikation von Walen und Robben noch in 2.000 Kilometern Entfernung stören. Wale und Robben orientieren sich im Meer vor allem durch das Gehör. Zu viel Lärm erschwert ihnen die Suche nach Nahrung oder einem Paarungspartner. Blau- oder Finnwale, die ohnehin gefährdet sind, können so zusätzlich beeinträchtigt werden. Derzeit laufen Untersuchungen, um zu erkunden, wie es antarktisweit um die Pinguin-Bestände bestellt ist. Jenaer Forscher werten dazu im Auftrag des UBA erstmals Satellitenbilder aus. Erste Ergebnisse deuten darauf hin, dass die zum Teil dramatischen Bestandseinbußen Folge einer klimabedingt veränderten Krillverteilung im Meer sind. Krill, d. h. kleine Leuchtgarnelen, sind nicht nur Hauptnahrung von Pinguinen, sondern auch Lebensgrundlage unzähliger Vögel, Fische und Meeressäuger. Der Hauptinitiator des jährlichen Antarctica Day am 1. Dezember ist die Stiftung “Our Spaces – Foundation for the Good Governance of Interna-tional Spaces” –mit Sitz in Heydon, Großbritannien. Sie möchte damit auf den außergewöhnlichen Status und den großen wissenschaftlichen und ästhetischen Wert des eisigen Kontinents in abgeschiedener Lage und mit einzigartigem ⁠ Klima ⁠ aufmerksam machen. Die Antarktis ist im Gegensatz zur Arktis ein von Wasser umgebener Kontinent. Bedeckt von einem riesigen Eispanzer war die Antarktis jahrhundertelang fast unberührt. Seit mehr als einem Jahrhundert finden vor Ort vielfältige, menschliche Aktivitäten statt. Nach der Zeit der Entdecker und Walfänger waren es vor allem die Forscher, die ein außerordentliches Interesse an dem weißen Kontinent zeigten. Um territoriale Zwistigkeiten und militärische Nutzung zu unterbinden, wurde 1959 der sogenannte Antarktis-Vertrag geschlossen. So soll die Antarktis „im Interesse der gesamten Menschheit“ für alle Zeiten ausschließlich für friedliche Zwecke genutzt werden. Mit dem Umweltschutzprotokoll (USP) zum Antarktisvertrag, das 1998 in Kraft trat, verpflichten sich die Vertragsparteien zu einem umfassenden Schutz der antarktischen Umwelt und dem Verbot von Tätigkeiten im Zusammenhang mit kommerziellem Rohstoffabbau. Das Umweltschutzprotokoll-Ausführungsgesetz (AUG) setzt das USP in deutsches Recht um und überträgt dessen Vollzug und Überwachung dem Umweltbundesamt (UBA).

Lärm im Meer – der unterschätzte Störfaktor

Airgunsignale stören Wale über weite Distanzen Airguns oder Luftpulser können noch in 2.000 Kilometer Entfernung Meeressäuger stören. Das zeigt eine neue Studie des Umweltbundesamtes. Der Störeffekt kann sowohl die Physis als auch die Psyche der Tiere verschlechtern. Maria Krautzberger, Präsidentin des UBA: „Der Lärm in den Meeren nimmt zu und wird voraussichtlich weiter zunehmen. Allein schon wegen der weiter anstehenden Rohstofferkundungen in den Weltmeeren. Airguns spielen dabei eine wichtige Rolle. Für Meeressäuger sind sie eine erhebliche Störung. Ihre Schallimpulse können die Verständigung von Blau- und Finnwalen extrem einschränken. Im schlimmsten Fall sogar über ein gesamtes Ozeanbecken hinweg.“ Dieser Effekt träte auch dann ein, wenn Airguns nur zu wissenschaftlichen Zwecken eingesetzt werden. Airguns oder Luftpulser wurden entwickelt, um den Meeresboden nach Öl- und Gaslagerstätten zu untersuchen. Für Wale ist die Fähigkeit ihre Umgebung akustisch wahrzunehmen lebenswichtig – sie „sehen“ mit den Ohren. Werden diese Signale überdeckt, also das „Sehfeld“ verkleinert, kann dies die biologische Fitness – den physischen und psychischen Zustand – von marinen Säugetieren wie Blau- oder Finnwal verschlechtern. Menschgemachter Unterwasserlärm ist heute in allen Ozeanen fast ständig präsent. Der Schiffsverkehr ist eine Quelle chronischen Lärms, der ein hohes, sogenanntes „Maskierungspotential“ hat. Maskierung bedeutet, dass Schallsignale sich akustisch gegenseitig verdecken. Ein gewolltes Signal zur Verständigung zwischen den Meeressäugern wird dabei durch ein Störsignal verdeckt, also akustisch maskiert. Airguns für die Erkundung des Meeresbodens senden solche Störsignale aus. Sie sind viel lauter, aber auch viel kürzer als typischer Schiffslärm. Für diese lauten Schallimpulse wird schon länger befürchtet, dass sie das Gehör von marinen Säugetieren schädigen können. Solche impulshaften Schallwellen können dabei 1.000-mal lauter sein als ein Schiff. Unterwasserlärm kann aber auch die Kommunikation zwischen Meeressäugern und ihre Wahrnehmung anderer Umgebungsgeräusche stören. Die Wale brauchen diese Signale beispielsweise, um Nahrung oder Paarungspartner zu finden. Die neue ⁠ UBA ⁠-Studie demonstriert nun: Airgunsignale können über eine Entfernung von bis mindestens 2.000 Kilometern (km) wirken. Das kann Tiere innerhalb des besonders geschützten Bereiches der Antarktis südlich von 60° betreffen. Selbst dann, wenn die Schiffe nördlich des 60°-Breitengrades mit Airguns bzw. Luftpulsern arbeiten. Schon in mittleren Entfernungen (500-1.000 km) kann das Airgunsignal zu einem intervallartigen Geräusch gedehnt werden, das bereits ein hohes Maskierungspotenzial hat. In Entfernungen ab 1.000 km können sich Airgunimpulse zu einem kontinuierlichen Geräusch ausdehnen. Das schränkt die Verständigung von Blau- und Finnwalen in der Antarktis extrem ein; auf nur noch etwa ein Prozent des natürlichen Verständigungsraumes. Die Ergebnisse der UBA-Studie zeigen, dass Maskierungseffekte und signifikante Auswirkungen auf das Vokalisationsverhalten von Tieren über große Distanzen möglich sind und bei der Bewertung von Umweltwirkungen impulshafter Schallquellen wie Airguns beachtet werden sollten. Das Modell soll in einem Folgeprojekt weiterentwickelt werden, so dass auch eine Übertragung auf andere Lebensräume möglich ist. Hierzu gehört zum Beispiel die Arktis, in der in den nächsten Jahren mit einer Vielzahl von ⁠ Airgun ⁠-Einsätzen zur Erkundung des Meeresbodens auf Bodenschätze und zur Forschung zu rechnen ist. UBA-Präsidentin Maria Krautzberger: „Wir müssen die Wirkung von Schallimpulsen aus Airguns auf die Meeressäuger genau kennen und diese in die Umweltbewertung der Meeresforschung einbeziehen. Wir brauchen deshalb auch ein internationales Lärmschutzkonzept, zum Beispiel im Rahmen des Antarktis-Vertragsstaaten-Systems.“ In Deutschland hat das Bundesumweltministerium zum 1. Dezember 2013 ein Schallschutzkonzept für die Nordsee in Kraft gesetzt, das einen naturverträglichen Ausbau der Offshore-Windkraft ermöglicht. Es soll die hier lebendenden Schweinswale besonders in der Zeit der Aufzucht ihres Nachwuchses vor Lärm schützen, der beim Rammen der Fundamente für die Windkraftanlagen entsteht. Vollständiger Abschlussbericht zu der UBA-Studie „ Entwicklung eines Modells zur Abschätzung des Störungspotentials durch Maskierung beim Einsatz von Luftpulsern (Airguns) in der Antarktis “. Bei den zur Erkundung des Untergrundes eingesetzten Airguns (oder Luftpulser) handelt es sich prinzipiell um Metallzylinder, in denen Luft mit hohem Druck komprimiert wird und dann explosionsartig austritt. Hierbei entsteht eine Gasblase, die beim Kollabieren ein sehr kurzes, aber sehr lautes Schallsignal erzeugt. Der größte Teil der von Airguns erzeugten Schallwellen stammt aus dem tiefen Frequenzbereich bis 300 Hertz, so dass eine Überschneidung mit Lauten und Gesängen von Walen und Robben wahrscheinlich ist. Vor allem die im Südlichen Polarmeer häufigen Bartenwale, wie Blauwal oder Finnwal, kommunizieren überwiegend in diesem Frequenzbereich. Die UBA-Studie modellierte die Schallausbreitung von Airgun-Signalen für Entfernungen in 100, 500, 1.000 und 2.000 km. Kurze, tieffrequente Schallsignale können sich über große Entfernungen zu einem akustischen Dauersignal verlängern, das ein hohes Störpotenzial hat. Die modellierten Störsignale wurden mit Rufen und Gesängen von Finnwal, Blauwal und Weddellrobbe überlagert, um die Distanzen zu ermitteln, in denen Kommunikationssignale potenziell maskiert (= verdeckt) und dadurch Kommunikationsreichweiten verringert werden können. Die Störsignale wurden mit einem mathematischen Hörmodell  im Frequenzbereich der ausgewählten Vokalisationssignale von Weddellrobbe, Blauwal und Finnwal analysiert. Diese UBA-Studie zeigt, dass auch die Fernwirkung von Unterwasserlärm nicht unterschätzt werden sollte: Obwohl eine Reihe von Fragen noch unbeantwortet sind, zeigen die Ergebnisse der Studie, dass Maskierung durch Airgun-Signale sehr wahrscheinlich ist und ein Populationseffekt bei dem modellierten Maß der Auswirkung nicht ausgeschlossen werden kann. Dies sollte Eingang in die Betrachtung möglicher Umweltwirkungen impulshafter Schallquellen wie Airguns finden.

Assessment of potential for masking in marine mammals of the Antarctic exposed to underwater sound from airguns

Functional marine mammal acoustic communication evolved under natural ambient noise levels, which makes communication vulnerable to anthropogenic noise sources. In this report, we consider the potential long-range effects of airgun noise on marine mammal communication range. During the propagation process, airgun impulses are reflected multiple times from the sea surface, refracted in sound channels and reverberated, leading to signal stretching that may result in a continuous received sound. Veröffentlicht in Texte | 16/2014.

Assessment of communication masking in Antarctic marine mammals by underwater sound from airguns

Marine mammals depend largely on their sense of hearing. Underwater noise can lead to acoustic masking of biologically important sounds. Marine airguns used for scientific studies of the seabed produce this type of sound. In this project, models were developed to assess the masking potential of airguns on blue whale, fin whale, killer whale and Weddell seal communication. The results of the models also show that seismic surveys conducted at lower latitudes (Australia) may also have masking potential in remote areas at higher latitudes (Antarctica). In the majority of the scenarios considered, however, a severe masking effect only manifests at distances of up to 200 km. Veröffentlicht in Texte | 89/2021.

1 2 3 4