API src

Found 113 results.

Grundlagen ionisierender Strahlung und Strahlenschutz

Ionisierende Strahlung und radioaktive Stoffe werden in vielen Anwendungsbereichen gezielt genutzt, können andererseits aber auch schädlich für den Menschen sein. Um die Risiken der Anwendung zu minimieren, gibt es in Deutschland umfangreiche Regelungen zum Strahlenschutz, die in entsprechende Schutzmaßnahmen umgesetzt werden. Bei Einwirkung ionisierender Strahlung auf den menschlichen Körper unterscheidet man die möglichen Risiken in sofort auftretende (deterministische) und später auftretende (stochastische) Schäden. Für stochastische Schäden gibt es keine Schwellenwerte. Die Wahrscheinlichkeit zu erkranken, insbesondere an Krebs, ist vor allem von der Dauer und Höhe der Strahleneinwirkung abhängig. Deterministische Schäden (Akutschäden) treten bei Menschen ab einer bestimmten Dosisschwelle auf. Ab dieser nimmt der Schweregrad des Schadens mit der Höhe der Strahlendosis zu. Deterministische Schäden sind beispielweise Hautrötung, Haarausfall oder Blutarmut (Anämie). Bei höheren Dosen kommt es zum Organversagen. Mehr Informationen finden Sie unter Bundesamt für Strahlenschutz (BfS): Wie wirkt ionisierende Strahlung? Um stochastische Schäden zu minimieren, wurden rechtsverbindlich (StrlSchG 2017; 2013/59/EURATOM) drei allgemeine Grundsätze des Strahlenschutzes festgelegt: 1. Rechtfertigung: Eine Anwendung ionisierender Strahlung ist nur zulässig, wenn sie mehr Nutzen bringt als möglicherweise Schäden verursacht. Der Nutzen soll dabei auf keine andere Weise zu erlangen sein. Die Rechtfertigung wird bei neuen Sachverhalten überprüft. 2. Dosisbegrenzung: Bei den als gerechtfertigt eingestuften Anwendungen ionisierender Strahlung dürfen die gesetzlich festgelegten Grenzwerte nicht überschritten werden. Für die allgemeine Bevölkerung und für Personen, die beruflich ionisierender Strahlung ausgesetzt sind, gelten unterschiedliche Werte. 3. Optimierung: Die Strahlenbelastung bei der Nutzung ionisierender Strahlung muss für alle Beteiligten so niedrig gehalten werden, wie es vernünftigerweise möglich ist (ALARA-Prinzip: As Low As Reasonably Achievable). In der Praxis kann das durch verschiedene Maßnahmen erreicht werden, u.a.: Aufenthaltsdauer verkürzen: Je kürzer man ionisierender Strahlung ausgesetzt ist, desto geringer ist die Strahlenbelastung. Wird die Aufenthaltsdauer halbiert, reduziert sich die Strahlenbelastung auch um die Hälfte. Abstand vergrößern: Je mehr man sich von der Quelle ionisierender Strahlung entfernt, desto geringer ist die Strahlenbelastung. Dabei gilt: Doppelter Abstand reduziert die Strahlenbelastung auf ein Viertel. Abschirmung: Die Quelle ionisierender Strahlung ist durch geeignete Materialien und ausreichende Dicke abzuschirmen. Dabei spielt die Art der Strahlung eine wichtige Rolle. Beispielsweise reicht ein Blatt Papier um Alphateilchen abzuschirmen. Zur Abschirmung von Gamma- und Röntgenstrahlung braucht man aber dicke Schichten aus Blei oder Beton. Aktivität minimieren: Soll eine radioaktive Quelle zum Einsatz kommen, ist die Aktivität möglichst niedrig zu halten. Um die Einwirkung ionisierender Strahlung auf ein Medium zu quantifizieren, verwendet man den Begriff der Dosis. Im Strahlenschutz werden unterschiedliche Dosisarten definiert: Die Energiedosis gibt z.B. an, wie viel Energie ein Medium bei der Bestrahlung mit ionisierender Strahlung aufnimmt. Sie wird in Gray (Gy) gemessen. Die Organ-Äquivalentdosis ist die gewichtete Energiedosis in einem Organ oder Gewebe, unter Berücksichtigung biologischer Wirkung der Strahlung. Sie wird in Sievert (Sv) angegeben. Die Effektive Dosis ist die Summe aller gewichteten einzelnen Organ-Äquivalentdosen, unter Berücksichtigung der Strahlenempfindlichkeit der verschiedenen Organe. Sie wird ebenfalls in Sievert (Sv) angegeben. In der folgenden Tabelle sind Beispiele für effektive Dosen in mSv durch häufige Tätigkeiten und Anwendungen zusammengestellt:

Analyse und Ueberwachung von Radionukliden und toxischen Elementspuren in der Umwelt

Das Projekt "Analyse und Ueberwachung von Radionukliden und toxischen Elementspuren in der Umwelt" wird/wurde ausgeführt durch: Gesellschaft für Strahlen- und Umweltforschung mbH, Institut für Strahlenschutz.Entwicklung, Verbesserung, Anpassung und Erprobung von Verfahren zur Bestimmung von Alphastrahlern und anderen Radionukliden in Luft, Wasser, Bewuchs, Boden und Nahrungsmitteln. Ueberwachung von Alpha-Strahlern, insbesondere Transuranen, in Abluft, Primaer- und Abwasser kerntechnischer Anlagen (mit BGA). Messung des natuerlichen Untergrundes einzelner Radionuklide in Luftstaub und Niederschlag (teilweise mit Usaec). Ausscheidungsanalyse von Radionukliden bei Stoffwechseluntersuchungen an Kleinkindern (mit Kinderklinik der Uni Muenchen). Ueberwachung von Elementspuren in Luftstaub durch Atomabsorptions-, Aktivierungs- und Elektroanalyse sowie Ir-Spektroskopie. Bestimmung von Nullpegel- und Intoxikationsgehalten an Pb und cd in Schlachtrindern zur Festlegung von Toleranzwerten (mit Institut fuer Nahrungsmittelkunde der Uni Muenchen) sowie in Zaehnen (mit Zahnklinik der Uni Muenchen). Ueberwachung von PO-210 in verschiedenen Nahrungsmitteln. Abgabe toxischer Elemente aus Gebrauchsgeschirr.

Weiterentwicklung von Strahlenschutzmethoden

Das Projekt "Weiterentwicklung von Strahlenschutzmethoden" wird/wurde gefördert durch: Kernforschungsanlage Jülich GmbH. Es wird/wurde ausgeführt durch: Kernforschungsanlage Jülich GmbH, Abteilung Sicherheit und Strahlenschutz.Gegenstand der Forschungstaetigkeit der Zentralabteilung Strahlenschutz (ZST) ist die Erarbeitung von Ueberwachungskonzepten, Messprogrammen und -verfahren fuer die Umweltueberwachung sowie die Entwicklung nuklidspezifischer qualitativer und quantitativer Nachweisverfahren hoher Empfindlichkeit fuer Alpha- und Betta-Strahler in der Umweltanalytik. Arbeiten an einem jodselektiven Ueberwachungssystem fuer kerntechnische Stoerfaelle. Entwicklung eines Telemetriesystems fuer die Daten der von der Industrie zu entwickelnden peripheren Stationen zu einer Zentrale.

Radon

Radon ist ein radioaktives Gas, das durch radioaktiven Zerfall von natürlich vorkommendem Uran und Thorium in Gesteinen und Böden entsteht. Es hat eine Halbwertszeit von 3,8 Tagen. Radon ist ein Edelgas, es geht kaum chemische Reaktionen ein und kann sich leicht im Boden bewegen. Die Konzentration von Radon in der Bodenluft ist in Deutschland regional stark unterschiedlich. Sie ist abhängig von der Gasdurchlässigkeit des Erdbodens und von lokal vorkommenden Gesteinen, die natürliches Uran oder Thorium enthalten, z.B. manche Granite und Gesteine ähnlicher Zusammensetzung. Je höher das Vorkommen solcher Gesteine dicht unter der Erdoberfläche und je gasdurchlässiger der Boden, desto größer ist das Potential für eine hohe Radonkonzentration in der Bodenluft (Radonpotenzial). Mit Ausnahme vereinzelter Stücke in den eiszeitlichen Geschieben kommen in Berlin derartige Gesteine in den oberen Gesteinsschichten nicht vor. Radon kann in baulich nicht korrekt ausgeführten oder beschädigten Gebäuden aus der Bodenluft durch Fugen, Risse oder auch Kabel- und Rohrschächte ohne Abdichtung in den Keller, oder bei kellerlosen Gebäuden ins Erdgeschoss eines Gebäudes eindringen. Wird dort nicht ausreichend gelüftet, reichert sich Radon in der Raumluft an, es kann dann zu hohen Radonkonzentrationen kommen. Eine hohe Radonkonzentration in Innenräumen kann für Menschen vor allem bei längerer Aufenthaltsdauer eine Gesundheitsgefahr darstellen, denn Radon zerfällt in der Lunge zu weiteren radioaktiven Zerfallsprodukten und setzt dabei Alpha-Strahlung frei. Dadurch erhöht sich das Risiko, an Lungenkrebs zu erkranken. Die Bevölkerung soll deshalb vor hohen Radonkonzentrationen geschützt werden. Die Regelungen zum Schutz vor Radon sind in Kapitel 2 des Strahlenschutzgesetzes festgelegt. Um das Risiko für die Bevölkerung einzuschätzen, mussten die Bundesländer durch geeignete Messungen Gebiete mit erhöhtem Radonpotenzial (Karte, JPG, 631 kB) identifizieren und als Radon-Vorsorgegebiete ausweisen. In diesen gelten z.B. zusätzliche Anforderungen für den Radonschutz bei Neubauten und Messpflichten an Arbeitsplätzen im Erd- oder Kellergeschoss von Gebäuden. Das Land Berlin hat 2020 eine Messkampagne durchgeführt, bei der an 60 Messorten die Radonkonzentrationen in der Bodenluft gemessen wurde. Dabei wurden alle relevanten Typen von oberflächennahen Gesteinsschichten beprobt, hauptsächlich eiszeitliche Sedimente und Geschiebe . Tiefere Gesteinsschichten sind für das Radonpotenzial nicht maßgeblich, da der dort vorliegende Rupelton eine Barriere gegen aufsteigendes Radon bildet. Die Messdaten bestätigten, dass in Berlin keine Ausweisung eines Radonvorsorgegebietes erforderlich ist. Es ist dennoch nicht völlig auszuschließen, dass es in Einzelfällen auch in Berlin zu erhöhter Radonkonzentration in Gebäuden kommen kann z.B. durch Baustoffe oder künstlich aufgeschüttete Erdschichten aus Bauschutt oder Trümmerschutt. Allgemein kann durch gute Belüftung die Radonkonzentration verringert werden. Sollte Zweifel bestehen, ist es ratsam die Radonkonzentration in der Raumluft von einer behördlich anerkannten Stelle messen zu lassen, um im Anschluss geeignete Maßnahmen zum Schutz ergreifen zu können.

Berechnung der Strahlenbelastung für die Bevölkerung

Berechnung der Strahlenbelastung für die Bevölkerung Die Strahlenbelastung für die Bevölkerung in der Umgebung jeder kerntechnischen Anlage wird anhand der vom Betreiber bilanzierten Aktivitätsableitungen berechnet. Die Berechnungen beziehen sich auf eine repräsentative (fiktive) Person, die sich hinsichtlich ihrer Aufenthalts- und Verzehrgewohnheiten so verhält, dass daraus eine höhere Strahlenbelastung resultiert. Extreme Lebensgewohnheiten werden dabei nicht berücksichtigt. Die Berichterstattung über die aus den Aktivitätsableitungen mit der Fortluft und dem Abwasser ermittelte Exposition für die Bevölkerung ist eine gesetzliche Pflicht. Sie wird im Parlamentsbericht und im Jahresbericht "Umweltradioaktivität und Strahlenbelastung" des Bundesumweltministeriums dokumentiert. Für eine (fiktive) repräsentative Person wird die Strahlenbelastung in der Umgebung jeder kerntechnischen Anlage berechnet. Anhand der vom Betreiber bilanzierten Ableitungen wird die Strahlenbelastung in der Umgebung jeder kerntechnischen Anlage für eine repräsentative Person berechnet. Diese repräsentative Person ist eine fiktive Person, aus deren Aufenthalts- und Verzehrgewohnheiten eine höhere Strahlenbelastung resultiert (konservative Annahmen). Bis 2020 wurde die Strahlenbelastung der Bevölkerung statt für eine repräsentative Person für eine Referenzperson berechnet. Die Referenzperson ist ebenfalls eine fiktive Person, die sich hinsichtlich ihrer Lebensgewohnheiten so verhält, dass daraus eine außergewöhnlich hohe Strahlenbelastung resultiert. Bei der Referenzperson sind extreme Lebenssituationen nicht ausgeschlossen. Die berechnete Strahlenbelastung liegt bei der Referenzperson in der Regel höher als bei der repräsentativen Person. Berechnung der Strahlenbelastung mit Hilfe von Computersimulation Für die Berechnung kommen rechnergestützte Ausbreitungsmodelle zum Einsatz, die den Transport von Radionukliden aus einer kerntechnischen Anlage in die verschiedenen Bereiche der Umwelt beschreiben. Modellierung des Radionuklidtransfers von der Ableitung radioaktiver Stoffe aus dem Fortluftkamin über die Biosphäre zum Menschen. Aus den so berechneten Konzentrationen von radioaktiven Stoffen in den verschiedenen Umweltmedien wird die Strahlenbelastung der repräsentativen Person etwas konservativ, d. h. tendenziell zu hoch, abgeschätzt ( z. B. mit dem Dosismodell DARTM ). Die berechnete Exposition darf nach der Strahlenschutzverordnung höchstens 300 Mikrosievert für die effektive Dosis im Kalenderjahr betragen. Der Hauptanteil an der Exposition wird im Normalbetrieb durch das Radionuklid Kohlenstoff-14 hervorgerufen (siehe Abbildung): Dosisanteile von mit der Fortluft abgeleiteten radioaktiven Stoffen beim Betrieb von Kernkraftwerken Dosisrelevant ist hierbei vor allem die Aufnahme von Kohlenstoff-14 in Form von Kohlenstoffdioxid durch die Nahrung ( Ingestion ). Aktivitätsableitungen mit der Fortluft Insgesamt ergibt sich aus den Aktivitätsableitungen mit der Fortluft eine Exposition von weniger als 1 Mikrosievert im Kalenderjahr für Kleinkinder weniger als 1 Mikrosievert im Kalenderjahr für Erwachsene. Diese Werte liegen im betrachteten Zeitraum 1990 bis 2023 bei deutlich weniger als einem Prozent der natürlichen Strahlenbelastung der Bevölkerung (siehe Abbildung): Berechnete Effektivdosis für Erwachsene und Kleinkinder durch Ableitungen mit der Fortluft im Jahr 2023. Aktivitätsableitungen mit dem Abwasser Mit dem Abwasser aus kerntechnischen Anlagen werden jährlich etwa 100 Terabecquerel Tritium ( 3 H) und 1 Gigabecquerel sonstige Spalt- und Aktivierungsprodukte abgeleitet. Die abgeleitete Aktivitätsmenge von Alphastrahlern beträgt etwa 1 Megabecquerel . (T era =10 12 , G iga =10 9 , M ega =10 6 ). Aktivitätsableitungen mit dem Abwasser aus KKW im Jahr 2023 Die konservativ berechnete Exposition durch Abwasser beträgt in Folge dessen weniger als 6 Mikrosievert im Kalenderjahr für Kleinkinder weniger als 2.3 Mikrosievert im Kalenderjahr für Erwachsene und somit unter einem Prozent des gesetzlichen Grenzwertes. Exposition in der Umgebung von KKW durch Aktivitätsableitungen mit dem Abwasser 2023 Berichterstattung ist gesetzlicher Auftrag Die aus den Aktivitätsableitungen mit der Fortluft und dem Abwasser ermittelte Exposition der Bevölkerung wird im Parlamentsbericht und im Jahresbericht "Umweltradioaktivität und Strahlenbelastung" des Bundesumweltministeriums dokumentiert: Stand: 21.02.2025

Strahlenschutz in der Klinik - Expositionen von Klinikpersonal bei nuklearmedizinischen Therapien, Teilprojekt C

Das Projekt "Strahlenschutz in der Klinik - Expositionen von Klinikpersonal bei nuklearmedizinischen Therapien, Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Klinikum rechts der Isar der Technischen Universität München, Klinik und Poliklinik für Nuklearmedizin.

Was ist Radon?

Was ist Radon? Radon kommt überall in der Umwelt vor. Es entsteht im Boden als eine Folge des radioaktiven Zerfalls von natürlichem Uran , das im Erdreich in vielen Gesteinen vorkommt. Radon ist ein radioaktives Gas, das man weder sehen, riechen oder schmecken kann. Etwa sechs Prozent der Todesfälle durch Lungenkrebs in der Bevölkerung sind nach aktuellen Erkenntnissen auf Radon und seine Zerfallsprodukte in Gebäuden zurückzuführen. Aus natürlichem Uran in Böden und Gesteinen entsteht Radon , das sich in Gebäuden ansammeln kann. Dort erhöht es das Lungenkrebsrisiko der Bewohner. Radon ist ein radioaktives Gas, das man weder sehen, riechen oder schmecken kann. Radon wird aus allen Materialien freigesetzt, in denen Uran vorhanden ist. Es kommt überall auf der Welt vor. Der größte Teil der Strahlung , der die Bevölkerung aus natürlichen Strahlenquellen in Deutschland ausgesetzt ist, ist auf Radon zurückzuführen. Radon als Teil der Zerfallsreihe von Uran-238 Zerfallsreihe von Radon-222 Radon entsteht als Zwischenprodukt der Zerfallsreihe des in allen Böden und Gesteinen vorhandenem Uran -238 über Radium-226. Die Isotope (Sonderformen) Radon -219 (historisch "Actinon" genannt), Radon -220 ("Thoron") und Radon-222 ( Radon ) sind Teile der natürlichen Zerfallsreihen von Uran -235 ( Uran -Actinium-Reihe) Thorium-232 (Thorium-Reihe) und Uran -238 ( Uran -Radium-Reihe). Sie sind selbst radioaktiv, d.h. ihre Atomkerne zerfallen mit der Zeit und senden dabei Strahlung aus. Wenn auf www.bfs.de von " Radon " die Rede ist, ist immer Radon-222 aus der Uran -Radium-Reihe gemeint. Strahlenbelastung durch Radon Radon ist ein radioaktives Element. Der Atomkern radioaktiver Elemente ist instabil und zerfällt. Bei diesem Zerfall entsteht Strahlung . Die Halbwertszeit von Radon beträgt 3,8 Tage. Das bedeutet, dass – unabhängig davon, in welcher Konzentration Radon vorhanden ist – nach fast vier Tagen die Hälfte davon in seine Folgeprodukte zerfallen ist. Kurzlebige Radon -Folgeprodukte sind Isotope von Polonium, Wismut und Blei. Diese sind ebenfalls radioaktiv und haben eine sehr kurze Halbwertszeit . Ihre Atomkerne zerfallen in wenigen Minuten und senden dabei Alphastrahlen aus, die menschliches Gewebe schädigen können. Die radioaktiven Radon -Folgeprodukte lagern sich an Aerosole (feinste Teilchen in der Luft) an, die eingeatmet werden. Wenn die Radon -Folgeprodukte in der Lunge zerfallen, senden sie dort Strahlung aus. Diese Strahlung kann Zellen im Gewebe der Lunge schädigen und so Lungenkrebs auslösen. Radon-Risiko in Gebäuden Radon wird über Poren, Spalten und Risse aus Böden und Gesteinen freigesetzt – und gelangt auch in Gebäude. Dort sammelt sich Radon in Innenräumen an. Radon ist nach dem Rauchen eine der wichtigsten Ursachen für Lungenkrebs . Etwa sechs Prozent der Todesfälle durch Lungenkrebs in der Bevölkerung sind nach aktuellen Erkenntnissen auf Radon und seine Zerfallsprodukte in Gebäuden zurückzuführen. Verschiedene Schutzmaßnahmen helfen, die Konzentration von Radon in einem Gebäude zu verringern. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 13.11.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

So wirkt Radon auf die Gesundheit

So wirkt Radon auf die Gesundheit Über die Atemluft gelangt Radon in die menschliche Lunge und kann Lungenkrebs verursachen. Das Risiko, an Lungenkrebs zu erkranken, ist umso größer, je mehr Radon sich in der Atemluft befindet und je länger Radon eingeatmet wird. Ein Schwellenwert , unterhalb dessen Radon mit Sicherheit ungefährlich ist, ist nicht bekannt. Rund sechs Prozent aller Todesfälle durch Lungenkrebs in der deutschen Bevölkerung können Radon zugeschrieben werden. Radon ist nach dem Rauchen eine der wichtigsten Ursachen für Lungenkrebs. Radon kann beim Menschen Lungenkrebs verursachen. Das radioaktive Gas kommt in unterschiedlichen Konzentrationen überall in unserer Umwelt vor. Sammelt es sich in geschlossenen Räumen wie zum Beispiel Wohnungen an, können dort hohe Radon -Konzentrationen entstehen, die gesundheitsgefährdend sind. Wie wirkt Radon im Körper auf die Gesundheit? Wenn Radon radioaktiv zerfällt, entstehen als kurzlebige Folgeprodukte radioaktive Isotope von Polonium, Wismut und Blei. Sie sind in der Luft überwiegend an Staubteilchen, so genannte Aerosole , angelagert. Radon im menschlichen Körper Radon und seine Folgeprodukte werden mit der Luft eingeatmet. Während das gasförmige Radon fast vollständig wieder ausgeatmet wird, lagern sich die radioaktiven Folgeprodukte Polonium, Wismut und Blei an das empfindliche Lungengewebe an und zerfallen dort weiter. Dabei entsteht Alphastrahlung . Diese Strahlung kann die Zellen in der Lunge schädigen, insbesondere das darin enthaltene Erbgut bzw. die DNA . Dadurch kann Lungenkrebs entstehen. Radon führt auch zu einer Strahlendosis für andere menschliche Organe, vor allem für den Hals-Nasen-Rachenraum oder die Haut. Für alle anderen Organe ist die Strahlendosis selbst bei erhöhten Radon-Konzentrationen sehr klein. Dies gilt auch bei Schwangeren für deren Ungeborenes. Belege dafür, dass durch langjährige erhöhte Radon -Konzentrationen in geschlossenen Räumen andere Erkrankungen als Lungenkrebs entstehen können, gibt es bisher nicht. Wie gefährlich ist Radon für die Gesundheit? Atmet man Radon und seine radioaktiven Folgeprodukte über einen längeren Zeitraum in erhöhtem Maße ein, steigt das Risiko, an Lungenkrebs zu erkranken. Das Internationale Krebsforschungszentrum ( IARC ) in Lyon, das von der Weltgesundheitsorganisation WHO eingerichtet wurde, stuft Radon als nachgewiesen krebserregend für den Menschen ein. Das Bundesamt für Strahlenschutz ( BfS ) und die deutsche Strahlenschutz-Kommission ( SSK ) schließen sich dieser Bewertung an. Das Risiko, an Lungenkrebs zu erkranken, ist umso größer, je mehr Radon in der Atemluft ist und je länger der Zeitraum ist, in dem Radon eingeatmet wird. Es steigt mit der langjährigen Radon -Konzentration in der Wohnung linear an, ergaben Studien . Das BfS hat ermittelt, dass rund sechs Prozent aller Todesfälle durch Lungenkrebs in der deutschen Bevölkerung Radon in Wohnungen zugeschrieben werden können. Im Zeitraum 2018 bis 2022, der in der Studie untersucht wurde, waren das rund 2.800 Todesfälle pro Jahr. Damit ist Radon nach dem Rauchen eine der wichtigsten Ursachen für Lungenkrebs. Es gibt keinen Hinweis auf einen Schwellenwert , unterhalb dessen Radon mit Sicherheit kein Gesundheitsrisiko darstellt. Pro 100 Becquerel pro Kubikmeter Raumluft langjähriger Radon -Konzentration erhöht sich das Lungenkrebsrisiko um etwa 16 % . Sind Kinder besonders gefährdet? Es gibt keine wissenschaftlichen Belege dafür, dass Radon das Krebsrisiko für Kinder stärker erhöht als für Erwachsene. Die Datenlage ist hierzu aber bislang unzureichend. In einem europäischen Forschungsprojekt zum Radonrisiko, das das BfS koordiniert, wird daher auch das Risiko für Kinder gezielt untersucht. Für das Gesundheitsrisiko von Kindern dürfte im Allgemeinen die Radon-Konzentration in der Wohnung im Vergleich zu anderen Aufenthaltsorten, wie zum Beispiel der Schule, die größte Rolle spielen, da Kinder üblicherweise am meisten Zeit zuhause verbringen. Welchen Einfluss hat Rauchen auf das Gesundheitsrisiko durch Radon? Rauchen und Radon verstärken sich in ihrer schädlichen Wirkung auf die menschliche Gesundheit gegenseitig, so dass Radon für diejenigen, die rauchen oder geraucht haben, das Lungenkrebsrisiko besonders stark erhöht. Radon erhöht jedoch auch nachweislich das Lungenkrebsrisiko für Menschen, die ihr Leben lang nicht geraucht haben. Wie kann ich mich vor Radon schützen? Je niedriger die Radon -Konzentration ist, der ein Mensch tagtäglich ausgesetzt ist, desto geringer ist das Risiko, wegen Radon an Lungenkrebs zu erkranken. Oft reichen einfache Schutzmaßnahmen aus, um die Konzentration von Radon in einem Gebäude und damit das Erkrankungsrisiko deutlich zu senken. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 13.11.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Ableitungen natürlicher Radionuklide bei der Sanierung der Hinterlassenschaften des Uranerzbergbaus (Wismut)

Ableitungen natürlicher Radionuklide bei der Sanierung der Hinterlassenschaften des Uranerzbergbaus (Wismut) Als unvermeidliche Folge des früheren Uranerzbergbaus in Sachsen und Thüringen fällt bei und nach der Sanierung der betroffenen Gebiete auch heute noch ein Anteil natürlicher Radionuklide an, der über Luft und Wasser zielgerichtet in die Umgebung entlassen werden muss. Diese Ableitungen werden von den zuständigen Umweltbehörden genehmigt; ihre Mengen werden gemessen und die Auswirkungen auf die Umwelt und den Menschen kontrolliert. Die Tendenz der abgeleiteten Radioaktivitätsmengen ist deutlich abnehmend und eine unzulässige Gefährdung dadurch auszuschließen. Unmittelbar nach dem Ende des Zweiten Weltkrieges wurde in Sachsen und Thüringen mit dem Abbau und der Aufbereitung von Erzen zur Urangewinnung begonnen. Nach 1960 konzentrierte die "Sowjetisch-Deutsche Aktiengesellschaft Wismut" (SDAG Wismut) die Urangewinnung in einigen Großbetrieben. Die Uranproduktion wurde 1990 aus Gründen des Strahlen- und Umweltschutzes, aber auch aus wirtschaftlichen Gründen eingestellt. Für die Vorbereitung und Durchführung der Stilllegung und Sanierung derjenigen Hinterlassenschaften, die nach 1962 von der SDAG Wismut genutzt wurden, wurde die Wismut GmbH gegründet, deren alleinige Gesellschafterin die Bundesregierung ist. Emissions- und Immissionsüberwachung Bei der Sanierung der Hinterlassenschaften (untertägige Anlagen, Halden und Deponien mit Aufbereitungsrückständen sowie kontaminierte Betriebsflächen und Gebäude) werden unvermeidlich auch Radionuklide mit der Abluft und den Schachtwässern und Abwässern in die Umwelt abgeleitet. Für diese Ableitungen werden von den zuständigen Landesbehörden Grenzwerte festgelegt, deren Einhaltung die Wismut GmbH nachweisen muss. Ableitung radioaktiver Stoffe in die Oberflächengewässer im Zeitraum 1998 bis 2023 Die Überwachung der flüssigen und gasförmigen Ableitungen und der Konzentration dieser Stoffe in den Umweltmedien Luft, Wasser, Sediment, Boden, Lebensmittel pflanzlicher Herkunft und Futtermittel erfolgt seit 1997 einheitlich nach den Vorgaben der Richtlinie für Emissions- und Immissionsüberwachung bei bergbaulichen Tätigkeiten (REI Bergbau). Die Emissionsüberwachung und Immissionsüberwachung, die von der Wismut GmbH durchgeführt und von unabhängigen Messstellen kontrolliert wird, dient nicht nur der Kontrolle der Ableitungen und deren Auswirkungen auf die Umgebung, sondern auch der Erfassung der Gesamtsituation zur Vorbereitung weiterer Sanierungsentscheidungen und der Kontrolle der Auswirkungen von Sanierungsentscheidungen. Darüber hinaus führt die Wismut GmbH ein umfangreiches Monitoring in den betroffenen Regionen durch, das an den jeweiligen Stand der Sanierungsarbeiten angepasst wird. Ableitung radioaktiver Stoffe mit der Abluft in die Atmosphäre im Zeitraum 1998 bis 2023 Überblick über Ableitungen in Oberflächengewässer und Atmosphäre Die obere Abbildung gibt einen Überblick über die gesamte Ableitung von Uran und Radium-226 in die großen Vorfluter Zwickauer Mulde, Elbe, Pleiße und Weiße Elster im Zeitraum von 1998 bis 2023. Die Jahresgenehmigungswerte wurden in diesem Zeitraum ausnahmslos eingehalten. Dies gilt auch für die mit der Abluft in die Atmosphäre abgeleiteten Mengen von Radon -222 und langlebigen Alpha-Strahlern, die in der unteren Abbildung dargestellt sind. Insgesamt zeigt sich eine abnehmende Tendenz der auch während der Sanierung unvermeidlich anfallenden Ableitungen von Uran , Radium-226 und Radon -222. Auftretende Schwankungen, insbesondere bei den Abwassermengen, sind witterungsbedingt oder durch die ansteigenden Flutungswässer verursacht. Detaillierte Informationen und Daten Dem Bundesamt für Strahlenschutz ( BfS ) obliegt die zentrale Erfassung der Ergebnisse der Emissions- und Immissionsüberwachung für die Berichtspflichten der Bundesregierung gegenüber Bundestag und Bundesrat. Detaillierte Informationen und Daten zum Thema können den jährlichen Umweltberichten und Parlamentsberichten entnommen werden. Stand: 18.11.2024

Radionuklid-Labore des BfS

Radionuklid-Labore des BfS Labore zur Analyse und Messung von Radionukliden in verschiedenen Medien Das BfS ist mit hochspezialisierten Laboren in der Lage, Radionuklide in praktisch allen Medien wie etwa Wasser, Boden, Luft und Lebensmitteln zu bestimmen. Abhängig vom Radionuklid , dessen Gehalt in dem zu untersuchenden Medium und der Art des Mediums werden unterschiedliche Analyse- und Messverfahren eingesetzt. Die Hälfte der Radionuklid -Labore sind gleichzeitig Leitstellen für die Überwachung der Umweltradioaktivität. Die BfS-Labore im Strahlenschutz dargestellt im Organigramm (Stand 04.12.2023) Das Bundesamt für Strahlenschutz ( BfS ) ist mit hochspezialisierten Laboren in der Lage, Radionuklide in praktisch allen Medien wie etwa Wasser, Boden, Luft und Lebensmitteln zu bestimmen. Das Aufgabenspektrum reicht von der Kontrolle der Eigenüberwachung radioaktiver Emissionen mit Luft- und Wasser aus Kernkraftwerken über die Überwachung radioaktiver Stoffe in der Umwelt bis hin zur Spurenanalyse radioaktiver Stoffe in der Atmosphäre für die Überwachung des Kernwaffenteststoppabkommens. Analyse- und Messverfahren Abhängig von dem jeweiligen Radionuklid , dessen Gehalt in dem zu untersuchenden Medium und der Art des Mediums werden unterschiedliche Analyse- und Messverfahren eingesetzt. Gammastrahlung Alpha- und Betastrahlung Gammastrahlung Gammastrahlung Am einfachsten sind Radionuklide zu messen, die bei ihrem Zerfall Gammastrahlung aussenden (Gammastrahler). Gammastrahlung durchdringt das Probenmaterial und das Messgefäß und wird durch das Messgerät, meist spezielle Halbleiterdetektoren (Reinstgermanium-Detektoren), erfasst. Alpha- und Betastrahlung Alpha- und Betastrahlung Radionuklide , die bei ihrem Zerfall nur Alphastrahlung oder Betastrahlung aussenden (reine Alphastrahler oder Betastrahler ), können nicht so einfach wie Gammastrahler gemessen werden. Ihre Strahlung wird zum größten Teil oder sogar vollständig durch das Probenmaterial selbst oder die Gefäßwände abgeschirmt. Hier ist vor der eigentlichen Messung eine radiochemische Aufarbeitung der Probe erforderlich. Dabei werden die zu messenden Radionuklide mit aufwändigen Verfahren vom Probenmaterial und anderen - die Messung störenden - Radionukliden abgetrennt. Geeignete Messgeräte sind Proportionalzähler und Flüssigkeitszintillationszähler für Alpha- und Betastrahler sowie spezielle Halbleiterdetektoren (Siliziumdetektoren) für Alphastrahler . Weiterentwicklung der Analyse- und Messverfahren Die radiochemischen Verfahren zur Bestimmung von Alpha- und Betastrahlern werden im BfS laufend weiterentwickelt. Von besonderer Bedeutung sind hierbei Schnellmethoden. Ziel ist es, in regionalen oder überregionalen Notfällen , bei denen Radionuklide in die Umwelt freigesetzt werden, und in Fällen der Nuklearspezifischen Gefahrenabwehr die radioaktive Kontamination der Umwelt und von Lebensmitteln möglichst rasch zu erfassen, um gezielt wirksame Gegenmaßnahmen zum Schutz des Menschen ergreifen zu können. BfS -Radionuklid-Labore: Leitstellen für die Überwachung der Umweltradioaktivität Die Hälfte der Radionuklid -Labore sind gleichzeitig Leitstellen für die Überwachung der Umweltradioaktivität. Die Aufgaben der Leitstellen umfassen neben Messaufgaben auch die Entwicklung und Festlegung von Probenentnahme-, Analyse-, Mess- und Berechnungsverfahren sowie die Durchführung von Vergleichsmessungen und Vergleichsanalysen (Ringversuche). Akkreditierte Labore Qualitätsmanagement und Qualitätssicherung haben im BfS einen hohen Stellenwert. Alle Labore nehmen regelmäßig an nationalen und internationalen Vergleichsanalysen und -messungen (Ringversuchen) teil oder bieten in ihrer Funktion als Leitstelle selbst Vergleichsanalysen und -messungen an. Maßstab für die Labore ist ein Qualitätsstandard, der der Norm DIN EN ISO/IEC 17025 entspricht. Ein Teil der Labore ist bereits nach dieser Norm akkreditiert oder strebt die Akkreditierung an. Damit stellen die Labore unter Beweis, dass sie ein effizientes Qualitätsmanagementsystem unterhalten und über die fachliche und technische Kompetenz verfügen, belastbare Mess- und Analyseergebnisse zu liefern. Stand: 12.07.2024

1 2 3 4 510 11 12