API src

Found 1668 results.

HTW

Das Projekt "HTW" wird vom Umweltbundesamt gefördert und von Hochschule für Technik und Wirtschaft Berlin, Fachbereich 01, Studiengang Umwelttechnik , Regenerative Energien durchgeführt. Bisher sind am EUREF Campus einige Erzeugungsanlagen (darunter kleine WKA, Solaranlagen, Stirling BHKW) installiert. Das Ziel des Vorhabens ist es, die installierte Leistung erneuerbarer Erzeuger so zu steigern, dass Sie bedarfsgerecht und effizient zur Eigenbedarfsdeckung beiträgt. Dazu gehört nicht nur der Strombedarf der Gebäude auf dem Campus, sondern auch die Einbindung der elektrischen Fahrzeugflotte in das Last- bzw. Energiemanagement. Die zukünftige Lösung sieht eine intelligente Regelung vor, welche die Erzeuger mit ihrem z.T. fluktuierenden Einspeiseverhalten mit den Verbrauchern so kombiniert, dass die Energieüberschüsse minimiert werden und eine Unterdeckung des Strombedarfs weitestgehend ausgeschlossen werden kann. Die intelligente Anwendung von Energiespeichern, sowohl fest installiert als auch durch bidirektionale Anbindung von Elektrofahrzeugen (Vehicle to Grid), spielt bei der Realisierung eine zentrale Rolle. Im ersten Schritt wird eine messdatengestützte Simulation der Last- bzw. Erzeugungsflüsse durchgeführt, die die Grundlage für die Dimensionierung der zukünftigen Erzeuger und Energiespeicher darstellt. Auf Basis der Ergebnisse kann die Realisierung der Anlagen vorgenommen werden. Um die Funktionalität nachzuweisen und die Regelungsstrategien zu optimieren, muss anschließend ein umfassendes Energiemonitoring vorgenommen werden. Dadurch kann die Erreichung der festgelegten Ziele überprüft, sowie die getroffenen Simulationsannahmen validiert werden.

250-KW-Windturbine fuer Husum

Das Projekt "250-KW-Windturbine fuer Husum" wird vom Umweltbundesamt gefördert und von Husumer Schiffswerft durchgeführt. Objective: To achieve maximum use of wind energy and to gain experience by the construction of a 250 kW wind turbine at Husumer Schiffswerft. General Information: A 3 bladed, 25 m diameter, 250 kW wind turbine has been constructed by Husumer Schiffswerft and will be installed near the factory. The energy generated is fed into the factory grid; possible surplus is returned to the grid. The construction in modules aiming to obtain maximum capacity is innovative, as well as the single bearing basement of the nacelle. Furthermore, universal rotor hub allowing the installation of fixed pitch and variable pitch blades with improved blade-flange and blade-surface. The estimated annual yield at the site of installation is 500 MWh/yr which yields to a cost of energy generated of about 0,123DM/kWh. Payback time is estimated to 11 years which is expected to be reduced at about 5 years when the machine will be produced in series. Achievements: Machine installed on the 25.03.88. Continuous unmanned operation up to date considered as very successful. The measurement data acquisition system has regularly recorded the operating data and electricity outputs. The plant runs perfectly on automatic and feeds its energy into the grid. In 1989 the HSW-250 produced 361 MWH of electricity, operating 5616 h, with a mean annual wind speed of 5.1 m/s. Some changes have been made to the production machines as a result of experience with the prototype. Tip breaks are no longer used because of the noise the generate. Emphasis paid to the inclusion of a 'soft start' system. Over 100 machines have been built, derived directly from the prototype funded by this project, very high level of replication. A 750 kw W.T. was also developed along similar lines.

Operation of a large heat pump installed in the return pipe of a district heating system

Das Projekt "Operation of a large heat pump installed in the return pipe of a district heating system" wird vom Umweltbundesamt gefördert und von EAB Fernwärme GmbH durchgeführt. Objective: To build a 10 MW heat-pump which, linked to the Berlin urban district heating network, will take advantage of the heat still contained in the heating water returning to the city's power plant. General Information: The current Berlin BEWAG heating system provides hot water at 105 degree of Celsius. for the local network. After use the water returns to the power plant with a temperature of about 50 degree of Celsius. depending on the outside temperature. The project covers the construction of an industrial size heat-pump on the return network of the above urban heating system. The heat-pump will have a capacity of 10 MW and generate 35,000 MWh on the basis of an annual operation of minimum 3,500 hours at full capacity. 10,000 MWh will be fed back in the current system to save heating fuel and 25,000 MW will be used to feed an extension of the network. The project consists of 4 phases: 1. Planning 2. Construction 3. Commissioning 4. Measurement and Operation The project would be deemed successful if 2 x 25,000 MWh can be delivered during phase 4.

Use of a new type of anthracite curner and boiler in a power station

Das Projekt "Use of a new type of anthracite curner and boiler in a power station" wird vom Umweltbundesamt gefördert und von Sophia-Jacoba GmbH, Steinkohlenbergwerk durchgeführt. Objective: To demonstrate the use of an innovative, low pollutant burner of low volability anthracite, in a power station, in combination with a boiler system linked to a coal mine, thus solving the problems of mineral oil substitutes, use of low volability coal, SO2 separation, nitrogen removal, adjustability and economy. General Information: The burner design, divided into pre-burner and main burner, means that the ignition and burning of the coal dust can be maintained without brick-lined burner walls and heated combustion air. Due to the type of air passage and course of combustion, the combusted ash is drawn off dry; the boiler can be dimensioned without the need to take waste gas loading into account. The direction of the air and combustion allows 'the cold' combustion with low NOx concentrations. By the addition of lime dust, waste gases are desulphurised in the burner. After grinding to dust, fine coal is passed from storage silos to 7 burners then passed for pre-burning where it is ignited using propane gas; this is gradually decreased (after warming the pre -burner) as the coal dust passes in. This, then, continues to burn by recirculation of hot exhaust gases and continuous glowing coal-dust residue at the end of the pre -burner/start of the main burner. Air supply is via nozzles at the end of the burner which allows combustion control, termination and separation of air particles for easy disposal. To reduce SO2, lime dust is added in the main burner. Waste gas is filtered prior to emission to the atmosphere. The advantage of low-volability coals are: - easier storage (fewer volatile components); - easier transport by road, without need for special measures; - no danger from explosion since anthracite dust is not self -igniting, and there is no risk to groundwater. It is comparable to gas or oil-fired systems from the viewpoint of handling, storage and burning. Achievements: The burners were able to ignite and burn low volatile coal in the combustion chambers of this unit, however, an operation of the boiler was not possible. Reasons were the temperature level, flow behaviour, heat expansion and instabilities of the feed water flow. Thus the project failed. The calculation of expected and actual simple payback was originally based on a comparison with oil burning installations. Based on today's oil price a re-evaluation does not turn out favourable for coal. Furthermore, a realistic comparison cannot be conducted due to the defective boiler.

Modular system for an autonomous electrical power supply on cape clear island

Das Projekt "Modular system for an autonomous electrical power supply on cape clear island" wird vom Umweltbundesamt gefördert und von SMA-Regelsysteme durchgeführt. Objective: Construction of a modular system for an autonomous electrical power supply system on the Irish island of Cape Clear, consisting of two MAN Wind turbines of 30 KW each, one diesel generating set of 72 KW, which will be added to the existing ones and a short term battery storage, in order to show the principal function and efficiency of such system. The total estimated energy production is 200 MWh of which 60 MWh from the diesel aggregate. The estimated energy produced by each wind turbine is about 70 MWh annually. General Information: Two AEROMAN wind turbines of 30 KW each have been installed on the Irish island of Cape Clear and have been connected to a 72 KW diesel aggregate and a 100 KWh short term HAGEN battery storage in order to create a modular system for an autonomous electrical power supply and to demonstrate the principal function and efficiency of such system. The average windspeed on the island lies above a yearly average value of 7. 8 m/s and wind conditions are better during the winter period than in summer. There are five essential operation modes which differ in the mode of frequency control, while voltage control is maintained by a small synchronous generator. The actual grid frequency is taken as base value for the plants control unit: 1. Parallel operation of WECs and diesel engine. 2. Parallel operation of the diesel generator and the battery storage. 3. Parallel operation of the WECs and the battery storage. 4. Single operation of the storage system. 5. Parallel operation of WECs, diesel and battery. The minimum load is about 15 KW and the maximum one about 120 KW. The total annual yield has been estimated to 200 MWh of which 60 MWh from the diesel aggregate, with an estimated cost per unit of DM 0. 50, while a conventional solution (only diesel) has a cost of DM 0. 25/KWh. The project will be realized in cooperation with the firme MAN-Neue Technologie and Kassel/University des Landes Hessen and the National Board for Science and Technology in Ireland. Achievements: The wind turbines were installed in October 1986 and are since then in operation. The control system, the battery storage and the 72 KW diesel generator were installed in August 1987. The mean wind velocity in 1987 was 9. 7 m/s and the total energy consumption of the island for the same period amounts 338 MWh. From the overall energy consumption (of the reporting period), wind supplied 70 per cent, the diesel set 31 per cent and the batteries 11 per cent, while the battery storage input was 12 per cent. Following a damage in the battery storage system and the local utilities unwillingness to take over the operation of the system, only the wind turbines were still in operation in the beginning of 1993. The future of the project is uncertain due to the scheduled connection of the islands to the mainland grid. The ultimately very bad relationship between ESB and SMA have considerably detracted form the outcome of the project. The inhabitants of Cape ...

In ein Gesamt-Energiesystem integrierte 1,2-MW-Windturbine fuer die Insel Helgoland

Das Projekt "In ein Gesamt-Energiesystem integrierte 1,2-MW-Windturbine fuer die Insel Helgoland" wird vom Umweltbundesamt gefördert und von Gemeinde Helgoland durchgeführt. Objective: 1.2 MW wind turbine made mainly by MAN and known as WEG 60 with an estimated yearly output of 4.6 GWh integrated in a total energy system for the supply of electricity, heat and drinking water by desalination for the Island of Helgoland. General Information: 1. General. The energy demand on Helgoland is characterised by the following figures: yearly electricity demand is 16,500,000 KWh (max power demand of 3.2 MW), yearly heat demand is 28,000,000 KWh (max power demand of 12 MW). The system consists of the following parts: A wind turbine (1.2 MW), a combined heat/electricity system consisting of 2 diesel engines coupled to two electricity generators (2x1.2 MW) and two heat pumps (2x1.2 MW heat output), diesel engines producing electricity (2x0.4 MW + 3x3.34 MW), heavy fuel boilers producing heat (2x5.5 MW), hot water storage (150 cub. M), a sea water desalination plant (reverse osmosis), daily output 800 cub. M), and an exhaust purification plant. The wind turbine and the 2 heavy fuel diesel engines produce the required electricity. The 5 small diesel engines act as a back-up. The reverse osmosis plant will primarily be fed by excess electricity produced by the wind turbine. 2. Wind turbine. The MAN 1.2 MW (WC 60), 56 m diameter, 3 steel/GRFP bladed upwind wind turbine will produce approx. 4,6 GWh of electricity per year at a yearly average wind speed of 8 m/s at 10 m height. The turbine has cut in speed 4.9 m/s, cut-out 24 m/s and reaches its rated power at 12 m/s. The rotor is situated on a tower which consists of a steel pipe 25 m in length and 3.5 m external diameter, based on a 16 m high conical reinforced concrete base. In order to enable operation in a small local grid, a variable speed asynchronous generator with static frequency converter is used (AC-DC-AC link). It allows a speed variation of the rotor between 40-110 per cent of the rated speed. The reactive power demand is compensated by using a synchronous condensor. The frequency and grid stability will be accomplished by one of the heavy fuel diesel engines of 1.2 MW which is designed for operation of low load if necessary. The wind turbine generated electricity will be fed to the local diesel based grid. The project will allow to be determined the contribution of Wind Energy integrated in a total energy system for the supply of electricity, heat and desalination of sea water for the small Island of Helgoland with approximately 2000 inhabitants. Furthermore the wind turbine itself is innovative and is the first 3 bladed wind turbine with an installed power greater than 1 MW that has been supported by the Commission. The estimated cost per energy unit produced by the wind turbine is 0.40 DM while a conventional solution would lead to a cost of 0.21 DM. Achievements: The wind turbine was put into operation the 21/2/90 and was taken over by the user the 28/03/91. Up to date the wind turbine has been into operation and has produced about 1673 MWh which corresponds to ...

Teilprojekt 7

Das Projekt "Teilprojekt 7" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut IWAR, Fachgebiet Stoffstrommanagement und Ressourcenwirtschaft durchgeführt. Übergeordnetes Ziel von PLASTRAT ist die Entwicklung unterschiedlicher Lösungsstrategien aus den Bereichen Technik, Green Economy und sozial-ökologischer Forschung, die zur Minderung von Plastikeinträgen in das limnische Milieu urbaner Siedlungsräume beitragen. Ziel aller Ansätze von PLASTRAT ist dabei die Ableitung von Bewertungsparametern zur Kategorisierung umweltfreundlicher Kunststoffspezies und definierter Maßnahmen zur Risikominimierung von Plastikrückständen in limnischen Systemen. Das Institut IWAR der TU Darmstadt ist hauptverantwortlich für das Arbeitspaket 1 (AP 1) Mikroplastik im 'urbanen Wasserkreislauf' (vom 01.08.2017 bis 31.10.2017) und AP 2.3 'De- / Adsorption von Stoffen auf Mikroplastik' (vom 01.08.2017 bis 31.07.2020). Für AP 1 wird die TU Darmstadt Informationen und Daten sammeln, die zur Planung und Umsetzung von AP 2.3 genutzt werden. Die Literaturrecherche umfasst Mikroplastik und Schadstoffe in Kläranlagen. Die Hauptaufgabe von IWAR ist AP 2.3, hier wird das Adsorptions- und Desorptionsverhalten ausgewählter Schadstoffe auf Mikroplastik mit bekannter Herkunft und Eigenschaften in einem Langzeittest untersucht. Die Materialien für den Desorptionsversuch des Feldversuchs werden in AP 2.3.1 vorbereitet. Genaue Orte für den Implementierungstest werden ausgewählt und der Implementierungstest in AP 2.3.2 ausgeführt. Die ersten Proben werden im ersten Quartal 2018 gesammelt und im IWAR-Labor analysiert. Die Dauer des Langzeittests beträgt max. 24 Monate. In AP 2.3.3 werden die Messergebnisse des Langzeittests (AP 2.3.2) zusammengetragen und den Stakeholder (AP 6) vorgelegt, zur Bewertung der Umweltfreundlichkeit von Mikroplastik sowie Parameter sowie der Entwicklung von Maßnahmen zur Minimierung der Risiken bestimmter Schadstoffe enthalten, die auf Kunststoffen in den Kläranlagen aufgeladen werden.

Verbrennung von Kohle fuer das Brennen von Ziegelsteinen

Das Projekt "Verbrennung von Kohle fuer das Brennen von Ziegelsteinen" wird vom Umweltbundesamt gefördert und von Gebrüder Löhlein Ziegelwerke durchgeführt. Objective: To convert a brick kiln fired with heavy oil to coal firing and to examine the effects of the burning of coal on the specific heat consumption, the quality of the product and the occurring ashes. On the basis of preliminary examinations on other kilns, an energy saving of more than 55 per cent is anticipated compared with oil-firing. General Information: The brick tunnel kiln to be converted to coal firing is to be equipped with an intermittent coal firing facility and tested. For this purpose, the necessary coal preparation facilities (feed bunker, transport systems, hammer mill, daily bunker and coal stokers at the blowing in points) and the special burner systems are to be developed and adapted to suit the specified tunnel kiln. The overall system will then be tested and, if necessary, modified depending on the product quality. Finally, the operating efficiency of the coal firing facility is to be tested during a longer demonstration operation period. The concept for the coal firing facility was based on the use and testing or different types of coal with various grain sizes to be able to optimize the requirements on coal quality and grain size both for separation and charging. The driest possible fine coal with a grain size of 0 - 6 mm is necessary for the blowing device. The erected preparation facilities comprise a feed bunker, from which the rough coal is conveyed to the hammer mill via a dispatch belt. After being ground to the necessary grain size, the fine coal is transported by pipe chain conveyers to the dosing appliances on the tunnel kiln in the form of coal stockers. They intermittently charge a coal-air mixture into the combustion planes of the kiln through lateral slits via so-called guide tubes. The ends of the tubes, which are fitted with baffle plates, protrude into the combustion channel. They are incandescent (hot bulb ignition) and cause the ignition of the mixture. Charging is effected in a 30-second rhythm alternating with every fourth row of the burner tubes. In the cases of intermittent charging, the coal-air mixture is pressed against the baffle plate with a high pressure and passes into the furnace area via the lateral slits in the incandescent tubes. Combustion is almost explosive. The intermittent control of the air feed is effected by a central closed-loop control facility via solenoid valves. Achievements: In a 26 week operation period, a mean fuel consumption of 1500 kJ/kg of fired bricks including drying was achieved. This corresponds to an energy saving of about 42 per cent when compared to operation with heavy heating oil. Although the target was not achieved, a considerable saving quota was realized. In the meantime, the facility has been demonstrated to several hundred interested parties from the brick industry and has therefore made an important contribution to the necessary spread of the experience and information gained in the course of this project.

Erzeugung von Wasserstoff fuer die Hydrierung von Schweroel und Kohle

Das Projekt "Erzeugung von Wasserstoff fuer die Hydrierung von Schweroel und Kohle" wird vom Umweltbundesamt gefördert und von Veba Öl AG durchgeführt. Objective: The aim of the overall project were the planning, construction and industrial testing of a commercial-size entrained-flow gasification plant for the generation of hydrogen, which can be operated on solid fuels, e.g. pyrolysis coke and coal just as well as on liquid hydrogenation residues. The objectives of this project were the determination of data enabling an evaluation of the technical feasibility, the possibilities for official approval and the economic viability of the demonstration plant before the final decision on its construction was taken. Parallel to the planning of the demonstration plant, gasification tests were to be made in an existing pilot plant. These tests were in the first place to determine the design data for the demonstration plant as well as to test and to improve the solid feeding-system and the gasification burner. See project LG/20/84/DE. General Information: For the hydrogenation of coal or heavy oil, a major consideration is the economical and environment-friendly utilization of the hydrogenation residues containing heavy metals which become available as unavoidable by products. As against possible combustion, the gasification of the hydrogenation residues provides the advantage that, in addition to environmentally safe disposal of the residues, it is also possible to produce the hydrogen required after the hydrogenation units. For energetic reasons the direct feeding of the hot hydrogenation residues to the gasification seems to be the most appropriate solution. Because of the interconnection of the gasification and the hydrogenation plants is, therefore, largely dependent on the availability of the residue gasification. In order to avoid this it is necessary to provide for the disconnection of the two processes. This disconnection requires the solidification of the liquid residues and the intermediate storage of the solidified residues. Solidification can be effected by pyrolysis of the hydrogenation residues in indirectly heated rotary drums. The coke from the pyrolysis can be used for hydrogen generation. Because of the production of pyrolysis oil, the residue pyrolysis enables an increase of the total oil yield of hydrogenation plants. The dosage of the solid fuels to the pressurized gasification reactor would be carried out with an extruder feeding-system developed on pilot plant scale by VEBA OEL AG and Maschinenfabrik Werner and Pfleiderer. This feeding system consists essentially of a twin-screw extruder. The finely ground fuel and a small portion of a liquid binding-agent are metered pressure-free into the extruder. Hydrocarbons (heavy oils, used oils) as well as water can be used as binding agents. In the extruder, the solid fuel and the binding agent are first mixed, whereupon the mixture is compressed to a pressure above the reactor pressure. The optimum liquid content for the operation of the extruder depends greatly on the type and granulation of the solid fuel. The compacted fuel leaves ...

Hybridsystem Sonne-Wind - Pellworm

Das Projekt "Hybridsystem Sonne-Wind - Pellworm" wird vom Umweltbundesamt gefördert und von Telefunken Systemtechnik Hamburg durchgeführt. Objective: Three wind generators (30 KW each) will be connected with an existing 300 KW solar p.v. plant in order to demonstrate the interesting advantages of combining two different renewable energy sources. It is a hybrid solar-wind powered autonomous system with existing battery storage. It will allow designers to determine the smallest number of batteries necessary to safely operate such a hybrid system. Estimated total wind energy production: 220,000 KWh/yr. General Information: Three HSW 30 downwind, 2 bladed wind turbines have been installed and are operating next to an existing 300 KW solar p.v autonomous, with battery storage plant on the island of Pellworm. In order to study the contribution of wind energy coming from different wind machines at a rough North Sea environment and to show the feasibility of such a system in practical application. As wind and photovoltaic power are complementary, each being plentifull in the season the other is decreased, will allow designers to determine the lowest number of batteries necessary to safely operate the system, while the safety of the system will be increased. This is expected to lead to a reduction of the necessary battery installed capacity which will correspond to an amount of 300,000 DM. The annual wind energy yield is estimated to be 220,000 KWh and will be used in parallel with the p.v. solar energy for battery charging and/or grid connection, depending on the needs of the system and the grid. The project is replicable and it is expected that the results of it will allow a reduction of 35 per cent of the total cost. An important increase of the availability of the whole system is also expected. Achievements: Wind turbines were in operation in 11.05.89, when the measuring phase began. Up to 10.9.1990, the wind turbines operated for 5.400 hours on an average base, and they produced 201 MWh in total. The project is now ripe for commercialisation.

1 2 3 4 5165 166 167