API src

Found 187 results.

DE-LIGHT Transport

Das Projekt "DE-LIGHT Transport" wird vom Umweltbundesamt gefördert und von Center of Maritime Technologies e.V. durchgeführt. DE-LIGHT Transport is a multi-national initiative supported by the European Commission's Framework 6 programme that is investigating the design and manufacturing of lightweight sandwich structures in the marine, rail and freight container industries. Sandwich materials, consisting of two thin facings separated by a low density core, can be used to produce structures that are both light and stiff. They also offer opportunities for parts reduction through design integration, improved surface finish and lower assembly and outfitting costs. DE-LIGHT Transport aims to further promote the use of sandwich materials by developing key technologies that will support the practical realisation of robust sandwich designs. Specifically, this will include: - A multi-material sandwich design tool. Previous work has often focussed on a particular type of sandwich construction (e.g. laser-welded steel or composite). This has tended to yield niche results with limited applicability. DE-LIGHT Transport will implement a more generic design approach that will allow the evaluation and optimisation of a wide range of material and structural mixes according to the requirements of a given application. - Strategies for joining, assembly and outfitting ? the bringing together and integration of separate sandwich panels and/or sub-components to produce finished structures. In particular, modular approaches for the off-line production of sandwich assemblies to exploit economies of scale will be developed. Testing and validation procedures ? to provide accurate and reliable methods of determining fitness for purpose. The above technologies will be demonstrated within the project through the design and manufacturing of six prototype structures. These will include deck and deckhouse structures for ships, a rail vehicle cab, and a freight container. Risk-based design principals will be applied throughout to ensure that the new designs comply with existing regulatory frameworks. It is anticipated that DE-LIGHT Transport will provide designers of vehicles and vessels with practical approaches to the implementation of sandwich solutions as an alternative to traditional stiffened-plate designs. In this way, the benefits of sandwich construction will be unlocked for a wider range of applications.

AZV Project West Greenland

Das Projekt "AZV Project West Greenland" wird vom Umweltbundesamt gefördert und von Universität Münster, Institut für Ökologie der Pflanzen durchgeführt. The AZV (Altitudinal Zonation of Vegetation) Project was initiated in the year 2002. On the basis of a detailed regional study in continental West Greenland the knowledge about altitudinal vegetation zonation in the Arctic is aimed to be enhanced. The main objectives of the project are: a) considering the regional study: characterize mountain vegetation with regard to flora, vegetation types, vegetation pattern and habitat conditions, investigate the differentiation of these vegetation characteristics along the altitudinal gradient, develop concepts about altitudinal indicator values of species and plant communities, extract suitable characteristics for the distinction and delimitation of vegetation belts, assess altitudinal borderlines of vegetation belts in the study area. b) considering generalizations: test the validity of the altitudinal zonation hypothesis of the Circumpolar Arctic Vegetation Map ( CAVM Team 2003), find important determinants of altitudinal vegetation zonation in the Arctic, develop a first small scale vegetation map of entire continental West Greenland. Field work consists of vegetational surveys according to the Braun-Blanquet approach, transect studies, soil analyses, long-time-measurements of temperature on the soil surface and vegetation mapping in three different altitudinal vegetation belts (up to 1070 m a.s.l.).

Integrated Observations from Near Shore Sources of Tsunamis: Towards an Early Warning System (NEAREST)

Das Projekt "Integrated Observations from Near Shore Sources of Tsunamis: Towards an Early Warning System (NEAREST)" wird vom Umweltbundesamt gefördert und von Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. in der Helmholtz-Gemeinschaft (AWI) durchgeführt. NEAREST is addressed to the identification and characterisation of large potential tsunami sources located near shore in the Gulf of Cadiz; the improvement of near real-time detection of signals by a multiparameter seafloor observatory for the characterisation of potential tsunamigenic sources to be used in the development of an Early Warning System (EWS) Prototype; the improvement of integrated numerical models enabling more accurate scenarios of tsunami impact and the production of accurate inundation maps in selected areas of the Algarve (SW Portugal), highly hit by the 1755 tsunamis. In this area, highly populated and prone to devastating earthquakes and tsunamis, excellent geological/geophysical knowledge has already been acquired in the last decade. The methodological approach will be based on the cross-checking of multiparameter time series acquired on land by seismic and tide gauge stations, on the seafloor and in the water column by broad band Ocean Bottom Seismometers and a multiparameter deep-sea platform this latter equipped with real-time communication to an onshore warning centre. Land and sea data will be integrated to be used in a prototype of EWS. NEAREST will search for sedimentological evidences of tsunamis records to improve or knowledge on the recurrence time for extreme events and will try to measure the key parameters for the comprehension of the tsunami generation mechanisms. The proposed method can be extended to other near-shore potential tsunamigenic sources, as for instance the Central Mediterranean (Western Ionian Sea), Aegean Arc and Marmara Sea. Prime Contractor: Consiglio Nazionale delle Ricerche CNR; Roma; Italy.

Trees in multi-Use Landscapes in Southeast Asia (TUL-SEA): A Negotiation Support Toolbox for Integrated Natural Resource Management

Das Projekt "Trees in multi-Use Landscapes in Southeast Asia (TUL-SEA): A Negotiation Support Toolbox for Integrated Natural Resource Management" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut), Fachgebiet Pflanzenbau in den Tropen und Subtropen (490e) durchgeführt. Trees use water while storing carbon; tree crops replace natural forest while reducing poverty; market-oriented monocultures compete with risk-averse poly-cultures, trading off income and risk; plantations displace smallholders, trading off local rights and income opportunities; national reforestation programs use public resources, promising an increase in environmental services that may not happen. Trees in all these examples are closely linked to tradeoffs and conflict, exaggerated expectations and strong disappointment. Integrated Natural Resource Management (INRM) requires site-specific understanding of tradeoffs between and among the goods and services that trees in agro-ecosystems can provide. It is thus costly when compared to readily scalable green revolution technologies. Replicable, cost-effective approaches are needed in the hands of local professionals with interdisciplinary skills to help stakeholders sort out positive and negative effects of trees in multi-use landscapes ( agroforestry) on livelihoods, water and (agro) biodiversity, associated rights and rewards, and thus on Millenium Development Goals (reducing poverty - promoting equitable forms of globalisation - building peace). ICRAF in SE Asia has developed a negotiation support approach for reducing conflict in multi-use landscapes. The approach aims to bridge perception gaps between stakeholders (with their local, public/policy and scientific knowledge paradigms), increase recognition and respect for these multiple knowledge systems, provide quantification of tradeoffs between economic and environmental impacts at landscape scale, and allow for joint analysis of plausible scenarios. Building on the achievements of participatory rural appraisal, we can now add quantitative strengths with the toolbox for tradeoff analysis. The TUL-SEA project (NARS, ICRAF and Hohenheim) will in 3 years lead to: Tests of cost-effectiveness of appraisal tools for tradeoff analysis in a wide range of agroforestry contexts in SE Asia represented by 15 INRM case studies; building on ASB (Alternatives to Slash and Burn; http://www.asb.cgiar.org/) benchmark areas with significant positive local impacts on poverty, environment and peace (www.icraf.org/sea/Publications/searchpub.asp?publishid=1290); Enhanced national capacity in trade-off analysis, information-based INRM negotiations and ex ante impact assessments; An integrated toolbox ready for widespread application. The toolbox consists of instruments for rapid appraisal of landscape, tenure conflict, market, hydrology, agrobiodiversity and carbon stocks, and simulation models for scenario analysis of landscape-level impacts of changes in market access or agroforestry technology.

Tsunami Risk ANd Strategies For the European Region (TRANSFER)

Das Projekt "Tsunami Risk ANd Strategies For the European Region (TRANSFER)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The project main goal is to contribute to our understanding of tsunami processes in the Euro-Mediterranean region, to the tsunami hazard and risk assessment and to identifying the best strategies for reduction of tsunami risk. Focus will be posed on the gaps and needs for the implementation of an efficient tsunami early warning system (TEWS) in the Euro- Mediterranean area, which is a high-priority task in consideration that no tsunami early warning system is today in place in the Euro-Mediterranean countries. The main items addressed by the project may be summarised as follows. The present Europe tsunami catalogue will be improved and updated, and integrated into a world-wide catalogue (WP1). A systematic attempt will be made to identify and to characterise the tsunamigenic seismic (WP2) and non-seismic (WP3) sources throughout the Euro-Mediterranean region. An analysis of the present-day earth observing and monitoring (seismic, geodetic and marine) systems and data processing methods will be carried out in order to identify possible adjustments required for the development of a TEWS, with focus on new algorithms suited for real-time detection of tsunami sources and tsunamis (WP4). The numerical models currently used for tsunami simulations will be improved mainly to better handle the generation process and the tsunami impact at the coast (WP5). The project Consortium has selected ten test areas in different countries. Here innovative probabilistic and statistical approaches for tsunami hazard assessment (WP6), up-to-date and new methods to compute inundation maps (WP7) will be applied. Here tsunami scenario approaches will be envisaged; vulnerability and risk will be assessed; prevention and mitigation measures will be defined also by the advise of end users that are organised in an End User Group (WP8). Dissemination of data, techniques and products will be a priority of the project (WP9). Prime Contractor: Alma Mater Studiorum-Universita di Bologna; Bologna, Italy.

Sustainable Holistic Approaches and Know-how Tailored to India (SHAKTI)

Das Projekt "Sustainable Holistic Approaches and Know-how Tailored to India (SHAKTI)" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe, Geologisches Institut, Lehrstuhl für Angewandte Geologie durchgeführt. Das Projekt Sustainable Holistic Approaches and Know-how Tailored to India (SHAKTI) wird im Rahmen des BMBF Förderprogramms Global Change - Forschungs für die nachhaltige Entwicklung der Megastädte von Morgen unterstützt und von einem Indisch-Deutschen Konsortium bearbeitet. Neben den Koordinatoren - European Institute for Energy Research (EIfER) und Administrative Staff College of India (ASCI) - beteiligen sich zahlreiche deutsche und indische Forschungsinstitute, NGOs, lokale und regionale Verwaltungseinrichtungen, öffentliche und private Versorgungsunternehmen. SHAKTI fokussiert auf die Stadt Hyderabad, die Hauptstadt der Provinz Andhra Pradesh im Südosten Indiens gelegen. Hohen Wachstumsraten, vor allem im Bereich neuer Technologien, die sich in der Peripherie ansiedeln (Cyberabad) steht ein muslimisch geprägter Altstadtkern mit zunehmender Bevölkerungsverdichtung und mangelhafter Infrastruktur entgegen. Diese Situation bildet den Spannungsbogen, der bei der künftigen Entwicklung zu berücksichtigen ist. Auf der Basis von bereits existierenden Zielsetzungen sollen in der Stadt Hyderabad gemeinsam mit den lokalen Partnern Entwicklungsperspektiven und Problemlösungsstrategien erarbeitet werden. Darauf aufbauend werden integrierte Projekte für die Umsetzungsphase initiiert, die sowohl kurzfristigen Herausforderungen begegnen als auch mittel- und langfristige Anforderungen einer nachhaltigen Entwicklung berücksichtigen. Die Definition und Priorisierung der Problembereiche erfolgt überwiegend vor dem Hintergrund der Vor-Ort-Kenntnisse der indischen Partner, während Strategien und konkrete Projekte durch gemeinsame Lern- und Kommunikationsprozesse entwickelt werden. In SHAKTI wurden drei strategische Ziele definiert: Nachhaltige Konzepte und Strategien im Umgang mit schnellem Wachstum, Nachhaltige Modernisierung und Anpassung der städtischen technischen Infrastrukturen (Wasser, Abwasser, Energie, Verkehr), Anpassungsfähige und integrierte Lern- und Planungsprozesse unter Einbeziehung relevanter Interessenvertreter. Die konkreten Aufgaben der Angewandten Geologie Karlsruhe sind dabei: Task 1.1 Background study on urban water resources with special attention to groundwater related problems in the Hyderabad administrative area. Task 1.2 Report on alternative water management strategies available for Hyderabad. Task 1.3. Implementation plan for research & demonstration activities in the second project stage. Task 1.4. Input for WP 7 Monitoring & Evaluation.

Estimation of willingness-to-pay to reduce risks of exposure to heavy metals and cost-benefit analysis for reducing heavy metals occurence in Europe (ESPREME)

Das Projekt "Estimation of willingness-to-pay to reduce risks of exposure to heavy metals and cost-benefit analysis for reducing heavy metals occurence in Europe (ESPREME)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung durchgeführt. Heavy metals from different sources accumulate in the environment. From a policy point of view, it has been difficult to tackle the environmental problems due to heavy metals partly because the problem has been viewed from different policy domains (air, water, soils etc.). Thus, it is not guaranteed that the policy mix applied under environmental regulation is optimal. A systems analysis would be required to define the sources of heavy metals, how they are dispersed in the environment and which adverse effects they might cause on human and ecosystems health. From a policy point of view, it is also important to identify what kinds of policy responses would be most cost-effective to reduce the impacts of heavy metals. Such information is required for carrying out cost-benefit analyses of reducing the occurrence of heavy metals in our society. Identifying the benefits would include a monetary valuation of the impacts with contingent valuation (CV) approaches (e.g. assessing the willingness-to-pay, WTP). The focus of the work described will be on priority metals, which are mercury, cadmium, chrome, nickel, arsenic and lead. Core aim of the research is to carry out cost effectiveness (CEA) and cost-benefit analyses (CBA) for reducing the heavy metals occurrence, in the EU Member States and candidate countries, including damage assessment to the environment and human health in the long term following the impact pathway analysis which assesses the impacts and damages of pollutants from their emissions over their dispersion to exposure and impacts. Finally, a feasibility study will be conducted to identify the potentials, strengths and weaknesses and uncertainties of currently available macro-economic models to identify further research needs in this field.

Mechanistic effect models for the ecological risk assessment of chemicals (CREAM)

Das Projekt "Mechanistic effect models for the ecological risk assessment of chemicals (CREAM)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Ökologische Systemanalyse durchgeführt. There is widespread concern about how production and use of chemicals affect the environment. Yet food production and benefits of chemical products are vital for the functioning of European societies. In order to ensure sustainable use, EU regulations require extensive risk assessment before a chemical is approved for use. Current risk assessments focus on risk at the level of individual organisms, but according to EU directives the protection goal aims at achieving sustainable populations. Population-level effects depend not only on exposure and toxicity, but also on important ecological factors that are impossible to fully address empirically. Mechanistic effect models (MEMs) enable the integration of these factors, thus increasing the ecological relevance of risk assessments as well as providing vital understanding of how chemicals interact with ecosystems. Such understanding is crucial for improving risk mitigation strategies and ecosystem management. So far, however, regulators and industry have lacked understanding of the potential benefits that MEMs can deliver, and academics have been inconsistent in the approaches applied. This has led to scepticism about models, preventing a wider use of MEMs in risk assessment. Examples clearly demonstrating the power of MEMs for risk assessment are urgently needed, and industry, academia and regulatory authorities across Europe need scientists that are trained in both MEMs and regulatory risk assessment. CREAM will develop and experimentally validate a suite of MEMs for organisms relevant for chemical risk assessments. The consortium includes the main sectors involved (industry, academia, regulators) and will formulate Good Modelling Practice that will be followed in all individual projects, thus leading to consistency and transparency. CREAM will provide world class training for the next generation of ecological modellers, emphasizing transparency and rigorous model evaluation as core elements of the modelling process.

Potentials and constraints of the link of agriculture and ecological sanitation

Das Projekt "Potentials and constraints of the link of agriculture and ecological sanitation" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Abwasserwirtschaft und Gewässerschutz B-2 durchgeführt. By 2020, the number of people living in developing countries will grow from 4.9 billion to 6.8 billion. Ninety percent of this increase will be in rapidly expanding cities and towns. More than half the population of Africa and Asia will live in urban areas by 2020. Growth in urban poverty, food insecurity, and malnutrition and a shift in their concentration from rural to urban areas will accompany urbanization. Severe environmental degradation and hygienic problems caused by the lack of infrastructure are additional problems. The linking of urban and peri-urban agriculture and ecological sanitation could play an important role for the solution of the mentioned problems. Agriculture within city limits, socalled urban agriculture, became a survival strategy for many poor families in the last decades. These families would not be able to secure their nutrition without urban agriculture. This form of agriculture can be a vehicle to increase food security and health, to generate economic opportunities for people with low income, and to promote recycling of waste and waste water. The philosophy of ecosan is based on the consequent implementation of the closing the loops approach (Nutrient Cycling). Urine and faeces are regarded as resources rather than waste. If collected separately they could easily used as fertilizer respectively as soil conditioner. The objective of the research is to evaluate the potentials and constraints of the link of urban and peri-urban agriculture and ecological sanitation, in short UPA-Ecosan-Concept. The UPA-Ecosan-Concept enables sustainable resource management, prevention of environmental degradation through urban agriculture, an increase in soil fertility and therefore higher yields. The challenge is to prove this theoretical statement scientifically. It has to be evaluated, if an UPA-Ecosan concept fulfils the requirements of a system, which is safe, easy to maintain, and transferable to local conditions. However, such a system has to be as effective as possible with respect to nutrient recycling, sanitation and public health. A vital part of the studies will be the investigation of the safe reuse of faeces and urine and the social acceptability of re-circulation of human-derived nutrients. The results should lead to a catalogue of appropriate methods and technologies on which a sustainable UPA-Ecosan concept can be based. Such a catalogue is imperative for the development of clear political guidelines, which should allow an effective integration of urban and peri-urban agriculture and ecological sanitation in existing urban economies. As a final result, the catalogue should address the challenge of rapid urbanisation and corresponding growth of food insecurity and sanitation deficits of the urban poor.

Sustainable Water management Improves Tomorrow's Cities'Health (SWITCH)

Das Projekt "Sustainable Water management Improves Tomorrow's Cities'Health (SWITCH)" wird vom Umweltbundesamt gefördert und von Ingenieurgesellschaft Prof. Dr. Sieker mbH durchgeführt. Context: With increasing global change pressures, and due to existing limitations, and un-sustainability factors and risks of conventional urban water management (UWM), cities experience difficulties in efficiently managing the ever scarcer water resources, their uses/services, and their after-use disposal, without creating environmental, social and/or economic damage. In order to meet these challenges, SWITCH calls for a paradigm shift in UWM. There is a need to convert adhoc actions (problem/incident driven) into a coherent and consolidated approach (sustainability driven). This calls for an IP Approach. Research conceptSWITCH therefore proposes an action research project which has as a main objective: The development, application and demonstration of a range of tested scientific, technological and socio-economic solutions and approaches that contribute to the achievement of sustainable and effective UWM schemes in 'The City of the future'.The project will be implemented by different combinations of consortium partners, along the lines of seven complementary and interactive themes. The research approach is innovative for the combination of: action research: address problems through innovation based upon involvement of users.learning alliances: to link up stakeholders to interact productively and to create win-win solutions along the water chain; multiple-way learning: European cities learn from each other and from developing countries, and vice versa.multiple-level or integrated approach: to consider the urban water system and its components (city level) in relation to its impacts on, and dependency of, the natural environment in the river basin (river basin level), and in relation to Global Change pressures (global level).Instruments and scopeAn IP with 30 partners, their resources, and a total budget of 25,191,396 EURO including budget for demonstration activities in 9 Cities in Europe and developing countries. Prime Contractor: UNESCO - Institute for Water Education, Delf, Netherlands.

1 2 3 4 517 18 19