API src

Found 18 results.

Teilprojekt A02: Experimentelle Untersuchung der Kinetik von Pyrolyse und Koksabbrand in einem Plug-Flow-Reactor mit Fokus auf die Zünd- und frühe Koksabbrandphase

Das Projekt "Teilprojekt A02: Experimentelle Untersuchung der Kinetik von Pyrolyse und Koksabbrand in einem Plug-Flow-Reactor mit Fokus auf die Zünd- und frühe Koksabbrandphase" wird vom Umweltbundesamt gefördert und von Universität Bochum, Institut für Energietechnik, Lehrstuhl für Energieanlagen und Energieprozesstechnik (LEAT) durchgeführt. In einem Plug-Flow-Reactor soll mit hoher zeitlicher Auflösung untersucht werden, wie der Einfluss der veränderten Spezieskonzentrationen in Oxyfuel-Atmosphären die Pyrolyse und den Koksabbrand beeinflussen. Dazu wird neben Feststoffprobenahme, Gasanalysetechniken und Teeranalysen auch ein optisches Verfahren eingesetzt, um die Koksabbrandphase zu untersuchen. Die Versuche dazu werden unter hohen Temperaturen und Aufheizraten durchgeführt, wie sie typisch sind für die Zünd- und Flammenzone in Oxyfuel-Kohlenstaubbrennkammern. Quantitatives Ziel ist die Ermittlung von Pyrolysefreisetzungs- und Koksabbrandraten. Basierende auf diesen Ergebnissen können Globalkinetiken für Pyrolyse und Koksabbrand zur Integration in CFD Codes formuliert werden.

Teilprojekt A01: Experimentelle Untersuchung der Kinetik von Pyrolyse und Koksabbrand in einem Well-Stirred-Reactor unter Flammen- und Ausbrandbedingungen

Das Projekt "Teilprojekt A01: Experimentelle Untersuchung der Kinetik von Pyrolyse und Koksabbrand in einem Well-Stirred-Reactor unter Flammen- und Ausbrandbedingungen" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Lehrstuhl für Wärme- und Stoffübertragung durchgeführt. In einem Well-Stirred-Reaktor wird die Kinetik in Oxyfuel-Atmosphäre, d.h. die Freisetzung von Masse und Energie aus einem Brennstoffpartikel, experimentell und theoretisch untersucht. Aufbauend auf Referenzbedingungen (Luftatmosphäre, reiner Kohlenstoff als Brennstoff) werden in Experimenten Pyrolyse und Koksabbrand getrennt untersucht und die Konzentrationen der gasförmigen Reaktionsprodukte mittels eines FTIR-Spektrometers gemessen. Basierend hierauf sollen existierende Kinetikmodelle für die Pyrolyse und den Koksabbrand auf ihre Eignung in Oxyfuel-Atmosphäre geprüft und bei Bedarf neu formuliert werden. Die Ergebnisse werden mit Teilprojekt A2 abgeglichen.

Teilprojekt B06: Modellierung der Partikel-Turbulenz-Chemie-Wechselwirkung für Oxyfuel-Prozesse

Das Projekt "Teilprojekt B06: Modellierung der Partikel-Turbulenz-Chemie-Wechselwirkung für Oxyfuel-Prozesse" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Energie- und Kraftwerkstechnik (EKT) durchgeführt. In diesem Vorhaben werden LES-Methoden im Rahmen eines Euler-Lagrange-Verfahrens verwendet. Für die Gasphasenverbrennung wird ein regimeübergreifendes Modell auf Basis der 'flamelet generated manifolds'-Strategie formuliert. Basierend zum einen auf einer thermodynamisch konsistenten Modellierung der Oxyfuel-Vorgänge und zum anderen auf DNS-Beiträgen werden Modelle zur Beschreibung der Interaktion zwischen Partikel-Turbulenz-Chemie unter Oxyfuel-Verbrennungsbedingungen mit hohem Detaillierungsgrad entwickelt. Die resultierenden Modelle werden in den CFD Code FASTEST/LAG3D integriert und mit Hilfe der experimentellen Daten aus dem SFB/Transregio validiert.?

Teilprojekt A03: Experimentelle Bestimmung von Reaktionskinetiken zur Freisetzung von Chlor- und Schwefelverbindungen und zur Umwandlung der Spezies in der Gasphase

Das Projekt "Teilprojekt A03: Experimentelle Bestimmung von Reaktionskinetiken zur Freisetzung von Chlor- und Schwefelverbindungen und zur Umwandlung der Spezies in der Gasphase" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Energiesysteme und Energietechnik (EST) durchgeführt. In Teilprojekt A3 werden Modelle zur Beschreibung der Chlor- und Schwefelchemie bei der Oxyfuel-Verbrennung entwickelt, mit denen die Bildung Cl- und S-haltiger Minoritätenspezies vorhergesagt werden kann, um so die Rückwirkung von Cl- und S-haltigen Spezies auf die Verbrennung zu berücksichtigen. Experimentellen Untersuchungen hierzu erfolgen in einem Flugstromreaktor sowie mittels thermogravimetrischer Analyse. Eine extraktive Messtechnik mit Massenspektrometer für hochreaktive S- und Cl-Spezies wird entwickelt und erprobt.

Teilprojekt C04: Modellierung der Strahlungseigenschaften von Partikeln in Kohlestaubflammen bei der Oxyfuel-Verbrennung

Das Projekt "Teilprojekt C04: Modellierung der Strahlungseigenschaften von Partikeln in Kohlestaubflammen bei der Oxyfuel-Verbrennung" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Lehrstuhl für Wärme- und Stoffübertragung durchgeführt. Ausgehend von der physikalischen Beschreibung als Mie/Lorentz-Streuung soll für die bei der Verbrennung auftretenden Partikel eine Modellierung erarbeitet werden, die eine einerseits genaue und andererseits effiziente Wiedergabe der Streuungseigenschaften ermöglicht. Dabei soll die verwendete numerische Methode zur Berechnung des Wärmestrahlungstransports berücksichtigt und die Modellierung daran angepasst werden. Für die zweite Förderperiode soll ein experimenteller Aufbau zur Überprüfung der Strahlungsmodellierung von Partikelwolken konzipiert werden. Weiterhin soll die Veränderung der Strahlungseigenschaften der Partikel während der Verbrennung modelliert werden.

Teilprojekt C05: Messung des Emissionsgrades von Brennstoffpartikeln in Oxyfuel-Atmosphäre

Das Projekt "Teilprojekt C05: Messung des Emissionsgrades von Brennstoffpartikeln in Oxyfuel-Atmosphäre" wird vom Umweltbundesamt gefördert und von Universität Bochum, Institut für Energietechnik, Lehrstuhl für Energieanlagen und Energieprozesstechnik (LEAT) durchgeführt. Es werden die spektralen Emissionsgrade (bis 5 Mikro m) brennender Kokspartikel in Oxyfuel-Atmosphären bestimmt. Dazu wird ein neuartiges Spektrometer aufgebaut. Die Messungen werden in einem laminaren Flugstromreaktor durchgeführt, in dem Kohlepartikel unter typischen Oxyfuel-Feuerraumbedingungen abbrennen. Mittels des Spektrometers wird der Emissionsgrad einzelner Kohlenstaubpartikel 'in-flight' gemessen. Hierzu sind kurze Belichtungszeiten erforderlich, die zu geringen Signalstärken führen. Dabei werden Einflussgrößen wie Kohletyp, abnehmende Kohlenstoffkonzentration mit fortschreitendem Ausbrand sowie der Einfluss der Oxyfuel-Reaktionsatmosphäre auf die Kohlepartikeloberfläche und daraus resultierenden Änderungen des Emissionsgrads untersucht.

Teilprojekt C03: Spektrale Modellierung der Wärmestrahlung in Oxyfuel-Kohlenstaubflammen

Das Projekt "Teilprojekt C03: Spektrale Modellierung der Wärmestrahlung in Oxyfuel-Kohlenstaubflammen" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Energiesysteme und Energietechnik (EST) durchgeführt. In Teilprojekt C3 sollen geeignete Modelle zur Berechnung der Wärmestrahlung von dreiatomigen Gasen in Oxyfuel-Flammen entwickelt werden. Ausgewählte vereinfachte spektrale Modelle sollen zunächst auf eine gemeinsame spektrale Datenbasis gebracht und dann anhand der Berechnung von Testfällen, die unter anderem Oxyfuel-Feuerungen repräsentieren, mit einem detaillierten Modell verglichen, evaluiert und weiterentwickelt werden. Hierbei soll ein Optimum hinsichtlich Genauigkeit und Recheneffizienz gefunden werden.

Teilprojekt A05: Kinetische Untersuchungen zum Einfluss der katalytischen Eigenschaften mineralischer Bestandteile von Kohleasche auf die Oxyfuel-Verbrennung

Das Projekt "Teilprojekt A05: Kinetische Untersuchungen zum Einfluss der katalytischen Eigenschaften mineralischer Bestandteile von Kohleasche auf die Oxyfuel-Verbrennung" wird vom Umweltbundesamt gefördert und von Universität Bochum, Fakultät für Chemie, Lehrstuhl für Technische Chemie (LTC) durchgeführt. In Teilprojekt A5 soll geklärt werden, ob die mineralischen Bestandteile, wie Na, K, Mg, Ca, Al oder Fe, der Kohle katalytisch aktiv sind und somit Einfluss auf den Oxyfuel-Verbrennungsprozess nehmen. Neben dem Verbrennungsprozess in O2 werden die beschleunigte Einstellung des Boudouard-Gleichgewichts und die Kohlevergasung mit H2O berücksichtigt, die durch Volumenvergrößerung erheblichen Einfluss auf das Strömungsfeld in Flammen nehmen können. Es sollen reale Kohlen aber insbesondere auch synthetische Modellkohlenstoffe untersucht werden, was eine schrittweise Steigerung der Komplexität der untersuchten Systeme erlaubt.

Teilprojekt C02: Instationäre Modellierung und Simulation von Oxyfuel-Feuerräumen

Das Projekt "Teilprojekt C02: Instationäre Modellierung und Simulation von Oxyfuel-Feuerräumen" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Energie- und Kraftwerkstechnik (EKT) durchgeführt. Modelle und Methoden, die aus den Teilprojekten des SFB/Transregio entwickelt werden, sollen in einem Gesamtmodell zusammengeführt werden, das in diesem Teilprojekt ausgelegt wird. Basierend auf einer fein aufgelösten Referenz-LES wird die Eignung der instationären Simulationsmodelle für die Vorhersage von Oxyfuel-Feuerräumen zunächst untersucht und bewertet. Ein Verbrennungsmodell, das auf dem feld-basiert transportierten 'filtered density function'-Verfahren beruht und für Oxyfuel-Bedingungen angepasst wird, soll bereitgestellt werden. Alle Modelle werden in den CFD Code FASTEST3D integriert und mit Hilfe der experimentellen Daten aus dem SFB/Transregio validiert.

B01: Theoretische und experimentelle Untersuchung der Entgasung und Oxidation von Kohlepartikeln in einem Gegenstrombrenner unter Oxyfuel-Bedingungen

Das Projekt "B01: Theoretische und experimentelle Untersuchung der Entgasung und Oxidation von Kohlepartikeln in einem Gegenstrombrenner unter Oxyfuel-Bedingungen" wird vom Umweltbundesamt gefördert und von Rheinisch-Westfälische Technische Hochschule Aachen University, Institut für Technische Verbrennung durchgeführt. Laminare Oxyfuel-Flammen werden in einer Gegenstromanordnung untersucht. Als Brennstoffe werden unter anderem gasförmige Entgasungssurrogate und Kohlestaub verwendet. Hier wird besonders die Gasphasenchemie betrachtet, aber auch deren Beeinflussung durch die Entgasung und den Koksabbrand. Das Teilprojekt trägt dazu bei, die Interaktion von Strömung und Verbrennung von gasförmigen und festen Brennstoffen unter Oxyfuel-Bedingungen grundlegend zu verstehen und Modelle hierfür zu entwickeln. Der hier zu entwickelnde reaktionskinetische Gasphasen-Mechanismus dient als Grundlage für großskalige numerische Simulationen.

1 2