API src

Found 40 results.

Related terms

Entwicklung und Erprobung einer radiochemischen Methode zur Bestimmung starker Saeuren in Luft und Niederschlagswasser

Das Projekt "Entwicklung und Erprobung einer radiochemischen Methode zur Bestimmung starker Saeuren in Luft und Niederschlagswasser" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Freiburg, Lehrstuhl für Analytische Chemie.Zielsetzung: Bestimmung starker Mineralsaeuren (speziell Schwefelsaeure) in Luft und Niederschlaegen. Kenntnis ueber 'Background'-Konzentrationen saurer atmosphaerischer Komponenten. Vorgehen: Untersuchung des Partikel- und Gasphasenanteils der Atmosphaere sowie von Regenproben. Bei Regenwasser 'voll'-Analysen und anschliessende Korrelation von Anionen und Kationen.

Herstellung von Phosphatdünger aus Klärschlammasche (Seraplant-Verfahren)

Die Seraplant GmbH wurde 2016 als Projektgesellschaft mit dem Ziel gegründet, Düngemittel aus Sekundärrohstoffen wie Klärschlammasche und Gärresten herzustellen. Potenzielle Abnehmer sind die Fort- und Landwirtschaft, Gärtnereien sowie Industriebetriebe. Ziel des Vorhabens ist es, Phosphor aus der Klärschlammasche in eine pflanzenverfügbare Form zu überführen und dadurch mineralischen Phosphordünger zu ersetzen. Geplant ist, jährlich ca. 60.000 Tonnen Düngemittel zu produzieren. Dabei wird zunächst aus Klärschlammasche, Mineralsäure (insbesondere Phosphorsäure) und weiteren Nährstoffkomponenten eine Suspension erzeugt. Der hergestellten Suspension, ein (Phosphor)Säure-Wassergemisch, können je nach gewünschtem Endprodukt, weitere Nährstoffkomponenten zugegeben werden. Als Nährstoffkomponenten sind Stoffe zu verstehen, die das Nährstoffangebot für die angebaute Pflanze liefert oder ergänzt, um das Wachstum der Pflanze zu steuern (z.B. Stickstoff, Schwefel, Kalium). Die so erzeugte Suspension wird anschließend zur Sprühgranulation in einer Wirbelschichtanlage weitergeleitet und dort zu Düngemittelgranulate verarbeitet. Die Innovation des Vorhabens besteht daran, die beschriebenen Prozesse der Suspensionsherstellung und der Granulation voneinander zu trennen. Bei der Zusammenführung von Mineralsäure und phosphorhaltiger Klärschlammasche findet eine exotherme Reaktion statt, bei der sich die Suspension auf bis zu 60°C erwärmt. Diese Wärmeenergie soll beim Trocknungs- und Granulationsprozess nutzbar gemacht werden, wodurch sich eine Energieeinsparung von 10 Prozent ergibt. Die Rückgewinnung von Phosphor aus Klärschlamm wird laut der neuen Klärschlammverordnung für die nach thermischer Behandlung anfallenden Aschen ab 2029 bzw. 2032 zwingend vorgeschrieben. Techniken für die gezielte Rückgewinnung oder Nutzbarmachung von Phosphor aus Klärschlammaschen haben sich bisher am Markt noch nicht etabliert. Mit der neuen Anlage sollen bei der Seraplant GmbH zunächst zwei Sorten Dünger hergestellt werden: P39-Phosphordünger aus Klärschlammasche und Phosphorsäure sowie NP-Dünger aus Stickstoff, Phosphor und Schwefel. Grundsätzlich können mit der Technologie jedoch je nach verwendeter Asche und zugeführten Nährstoffkomponenten auch andere Düngemitteltypen hergestellt werden. Das Verfahren ist auf alle Klärschlammaschen übertragbar, die einen ausreichend hohen Phosphorgehalt aufweisen und die gesetzlichen Schadstoffgrenzen der Düngemittelaufbereitung einhalten. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Ressourcen Fördernehmer: Seraplant GmbH Bundesland: Sachsen-Anhalt Laufzeit: seit 2019 Status: Laufend

Reinigung im Haushalt

Weniger ist mehr: umweltfreundlich reinigen Wie Sie Ihr Zuhause umweltschonend und mit wenig Chemie reinigen Entfernen Sie Schmutz möglichst sofort. Dosieren Sie die Reinigungsmittel sparsam und verwenden Sie vorwiegend Konzentrate. Bevorzugen Sie Reinigungsmittel mit dem Blauen Engel oder dem EU-Umweltzeichen. Verzichten Sie auf Desinfektionsreiniger, chlorhaltige Sanitärreiniger, ätzende WC-Reiniger mit anorganischen Säuren und chemische Abflussreiniger. Achten Sie auf Sicherheit und bewahren Sie Reinigungsmittel außerhalb der Reichweite von Kindern auf. Gewusst wie Alle Wasch- und Reinigungsmittel belasten das Abwasser mit Chemikalien. 2021 haben in Deutschland private Verbraucher*innen etwa 1,5 Millionen Tonnen Wasch- und Reinigungsmittel gekauft. Die Stoffe aus diesen Produkten gelangen trotz Kläranlage teilweise über das Abwasser in die Umwelt. Ein nachhaltiger Einsatz schützt die Umwelt, aber auch die eigene Gesundheit. Mechanische Hilfsmittel statt Chemiekeulen: Umweltfreundlicher putzt es sich durch die Unterstützung mechanischer Hilfsmittel. Geeignete Reinigungshilfen wie Mikrofasertücher, Bürsten und Fensterabzieher erleichtern die Reinigung. Verwenden Sie mechanische Rohrreiniger wie Spirale oder Saugglocke. Ebenfalls helfen diese Tipps Reinigungsmittel einzusparen: Frischer Schmutz lässt sich leichter entfernen als eingetrockneter Schmutz. Daher den Schmutz sofort beseitigen. Angebranntes, Saucenflecken und andere Verschmutzungen am Herd und im Backofen vor der nächsten Nutzung entfernen, damit diese nicht stärker einbrennen können. Einweichen in Wasser erleichtert ebenfalls die Reinigung. Wassertropfen am Badewannenrand, an der Duschkabine und an Armaturen nach der Benutzung entfernen. Verwenden Sie für große Flächen einen Abzieher und für kleine Flächen ein Tuch – das verhindert Kalkflecken und beugt Schimmel vor. Die Dosierung ist wichtig: Halten Sie sich an die Dosieranleitung auf der Verpackung, das schont die Umwelt und verhindert Putzstreifen. Lassen Sie sich vom Preis nicht abschrecken und nutzen Sie Reinigungsmittel-Konzentrate. Sie sind zwar auf den ersten Blick teurer, aber ergiebiger als andere Reinigungsmittel. Der Blaue Engel kennzeichnet Produkte, die innerhalb ihrer Gruppe besonders umweltfreundlich sind. Quelle: Blauer Engel EU-Ecolabel: Europaweit erkennen Sie umweltfreundliche Produkte an dieser „Blume“. Quelle: Europäische Kommission Wahl des Reinigungsmittels: Es gibt Reinigungsmittel, die der Umwelt besonders stark schaden. Allzweckreiniger, Handspülmittel, Küchenreiniger/ Scheuermilch und ein saurer Sanitärreiniger auf Basis von Zitronensäure reichen völlig aus, um Küche und Bad sauber zu halten. Wählen Sie Reinigungsmittel mit dem Blauen Engel oder der EU-Umweltblume . Verzichten Sie auf Desinfektionsreiniger, chlorhaltige Sanitärreiniger, ätzende WC-Reiniger mit anorganischen Säuren und chemische Abflussreiniger. Ätzende Reiniger mit starken Säuren oder Laugen erkennen Sie am Gefahrenpiktogramm (siehe Abbildung unten) auf dem Produkt. Ein Reinigungsmittel selbst herzustellen ist kein Garant dafür, dass es umweltfreundlich oder nicht gesundheitsgefährlich ist. Beliebte Bestandteile von DIY-Reinigern wie Orangenöl oder Essigessenz sind zum Beispiel nicht zu empfehlen. Orangen(schalen)öl enthält Limonene, welches Allergien auslösen kann. Essigessenz ist ätzend und kann Armaturen und andere verchromte Teile schädigen. Hygiene in Küche und Bad: Im Alltag kommen Sie mit Keimen in Berührung. Achten Sie deshalb auf die Hygiene. Normale Verschmutzungen in Küche, Bad und WC erfordern zur Beseitigung von Keimen keine Desinfektionsmittel. Klassische Reinigungsmittel reichen hier im Normalfall aus. Vorsicht vor Keimen an den Händen: Vor der Zubereitung von Speisen und nach jedem Toilettengang sollten Sie die Hände mit Wasser und Seife gründlich waschen und abtrocknen. Hängen Sie Spülschwämme und Geschirrtücher nach dem Gebrauch umgehend zum Trocknen auf. Wechseln Sie das Spül- und Trockentuch regelmäßig und waschen Sie es bei 60 Grad Celsius. So vermeiden Sie Gesundheitsgefahren: Immer wieder kommt es zu Unfällen im Haushalt, weil Reinigungsmittel nicht als solche erkannt werden. Besonders vorsichtig sollten Sie sein, wenn Kinder in der Nähe sind. Bewahren Sie Reinigungsmittel immer außerhalb der Reichweite von Kindern auf. Vorsicht, Verwechslungsgefahr: Stellen Sie Reinigungsmittel nicht in die Nähe von Getränkeflaschen und füllen Sie sie auch nicht in Lebensmittelverpackungen um. Lesen Sie die Anwendungs- und Sicherheitshinweise auf dem Etikett vor der Anwendung. Vermeiden Sie stark saure oder stark alkalische Reiniger, da sie bei unsachgemäßer Anwendung Reizungen oder Verätzungen verursachen können. Verwenden Sie nach Möglichkeit lösemittelfreie Produkte. Falls doch organische Lösemittel im Einsatz sind, sollten Sie kräftig lüften. Verzichten Sie möglichst ganz auf den Einsatz von Raumsprays und Duftspendern. Was Sie noch tun können: Beachten Sie auch unsere Hinweise zum Gebrauch von Waschmitteln (⁠ UBA ⁠-Umwelttipps). Entkalken Sie regelmäßig die Kaffeemaschine und den Wasserkocher. Sind die Heizstäbe zunehmend verkalkt, behindert das die Wärmeabgabe an das Wasser oder das Gerät geht sogar kaputt. Beachten Sie auch unsere Hinweise zum Thema Schimmel (UBA-Publikation). Hintergrund Umweltsituation: Die in den Reinigungsmitteln enthaltenen Tenside sind vollständig biologisch abbaubar. Das gilt aber nicht für andere Inhaltsstoffe wie Phosphonate, Polycarboxylate, Konservierungsmittel, Silikone, Paraffine, Duftstoffe und Farbstoffe. Viele dieser Stoffe können sich in der Umwelt und in Organismen anreichern und Gewässerorganismen schädigen. Außerdem tragen bestimmte Inhaltstoffe, etwa Phosphor- oder Stickstoffverbindungen, zur Überdüngung der Gewässer bei. Darum sollten Reinigungsmittel möglichst frei davon sein. Der aus Wasch- und Reinigungsmitteln von privaten Haushalten resultierende Chemikalieneintrag in das Abwasser liegt bei etwa 500.000 Tonnen. Gesetzeslage: Das Wasch- und Reinigungsmittelgesetz (WRMG) vom 29. April 2007 regelt die Herstellung, die Kennzeichnung und den Vertrieb von Wasch- und Reinigungsmitteln in Deutschland. Es setzt unter anderem die Vorgaben zum biologischen Abbau von Tensiden aus der Verordnung (EG) Nr. 648/2004 in nationales Recht um. Das WRMG erfasst klassische Wasch- und Reinigungsmittel sowie zur Körperreinigung bestimmte, tensidhaltige kosmetische Mittel und auch reine Pflegemittel, welche mit der nächsten Reinigung in das Abwasser gelangen. Der Paragraf 10 des WRMG regelt die Mitteilungspflicht der Hersteller von Wasch- und Reinigungsmitteln an das Bundesinstitut für Risikobewertung (⁠ BfR ⁠). Für den Export in andere Länder sind die gesetzlichen Bestimmungen der betroffenen Länder zu beachten. Marktbeobachtung: Die Verbraucher*innen in Deutschland kaufen nach Angabe des Industrieverband Körperpflege- und Waschmittel e.V. jährlich etwa 1,5 Millionen Tonnen Wasch- und Reinigungsmittel. Nicht enthalten darin sind Reinigungsmittel, die gewerblich und industriell eingesetzt werden. Weitere Informationen finden Sie auf folgenden Seiten: Wasch- und Reinigungsmittel (⁠ UBA ⁠-Themenseite) Frühjahrsputz (Radiointerview)

"Weniger ist mehr – auch beim Frühjahrsputz"

Verschiedene Stoffe aus Reinigungsmitteln gelangen über das Abwasser in die Umwelt und belasten die Ökosysteme – Tipps für den umweltfreundlichen Frühjahrsputz von UBA-Experte Marcus Gast. Was brauche ich unbedingt für meinen Frühjahrsputz? Auch für den jährlichen Frühjahrsputz braucht es keine besonderen Reinigungsmittel. Die Klassiker wie Allzweckreiniger, Spülmittel, Badreiniger und Küchenreiniger, wozu auch die Scheuermilch zählt, reichen völlig aus, um den Schmutz von allen wisch- und scheuerbeständigen Flächen zu beseitigen. Am besten verwendet man dabei spezielle Textilien aus Mikrofaser. Diese wirken wie eine feine Bürste und unterstützen den Reinigungsprozess. Komplett verzichtet werden sollte auf Desinfektionsreiniger und auf ätzende Reiniger mit starken Säuren oder starken Laugen. Warum? Ist das schädlich für die Umwelt, oder für die Gesundheit? Die Verwendung von Desinfektionsmitteln ist im Normalfall nicht nötig. Die Reinigung der Flächen mit einem normalen Reinigungsmittel reicht zumeist, um vorhandene Mikroorganismen ausreichend zu entfernen. Daran hat sich trotz Corona* nichts geändert. Desinfektionsreiniger enthalten Wirkstoffe, um Mikroorganismen abzutöten. Gelangen diese zum Teil schlecht biologisch abbaubaren Wirkstoffe ins Abwasser, was nach dem Putzen ja normalerweise der Fall ist, so belastet das die Kläranlagen unnötig. Studien belegen außerdem, dass in Haushalten, in denen häufiger Desinfektionsmittel eingesetzt werden, auch häufiger Allergien aufgetreten. Produkte mit starken, anorganischen Säuren oder Laugen wirken zwar schneller. Hier ist jedoch auch die Gefahr von Verätzungen höher. Auch können von diesen aggressiven Reinigern möglicherweise empfindliche Oberflächen angegriffen werden.  In jedem Fall gilt: Vorsorglich bei allen Reinigern die Gebrauchsanweisung lesen und etwaige Sicherheitshinweise beachten. Woran erkenne ich denn, welche Inhaltsstoffe enthalten sind? Und was ist das überhaupt? Die Hersteller müssen alle Inhaltstoffe eines Reinigungsmittels als Liste im Internet veröffentlichen. Diese Liste im Internet ist ähnlich wie die Inhaltsstoffangabe bei kosmetischen Mitteln auf der Verpackung. Hier kann man also nachschauen, welche Stoffe als Bestandteil aufgeführt werden. Stehen sie weit oben in der Liste, dann ist dies ein Hinweis auf eine verhältnismäßig hohe Konzentration in Produkt. Eine starke anorganische Säure ist beispielsweise Salzsäure, eine starke anorganische Lauge zum Beispiel die Natronlauge. Diese aggressiven Stoffe sind als "ätzend" eingestuft. Auch auf der Verpackung sind bereits wichtige Angaben zu den Inhaltsstoffen angegeben. Dort sind zum Beispiel Angaben zu den enthaltenen Konservierungsmitteln und den Duftstoffen zu finden. Auf welche Siegel und Label sollte ich achten, welche sind empfehlenswert? Offizielle Umweltzeichen bieten Orientierung und liefern Hinweise zu Umwelt- und Gesundheitsschutz. Besonders empfehlenswert sind Reinigungsmittel mit dem Blauen Engel oder mit dem EU-Umweltzeichen "Euroblume" . Allzweckreiniger, Spülmittel, Badreiniger und Küchenreiniger gibt es von verschiedenen Anbietern mit einem solchen Umweltzeichen. Diese sind im Vergleich zu konventionellen Produkten besonders umweltschonend und besitzen außerdem eine gute Reinigungsleistung. Dies wird übrigens durch eine unabhängige Stelle überprüft. Doch auch bei weniger umweltbelastenden Reinigungsmitteln mit Umweltzeichen sollte man auf die Dosierung achten – denn nur bei korrekter Dosierung sind diese tatsächlich umweltfreundlicher als andere Produkte. Es gilt also auch hier: Weniger ist mehr. Und wie umweltfreundlich sind selbst hergestellte Putzmittel, zum Beispiel mit Natron, Soda, Zitrone oder Essig? Ist das eine Alternative? “Do it yourself” (DIY) liegt im Trend. Ein Reinigungsmittel selbst herzustellen ist jedoch kein Garant dafür, dass das Reinigungsmittel auch umweltfreundlich ist. Natron oder Soda sind häufig Bestandteil von Allzweck- oder Küchenreiniger. Auch Reiniger mit Essigsäure werden angeboten. Entscheidend für die Abwasserbelastung ist jedoch eine Kombination aus Umweltwirkung, biologischer Abbaubarkeit und eingesetzter Menge. Mangels eindeutiger Dosiervorgaben ist bei DIY-Reinigern deren Abwasserbelastung meist nicht bestimmbar. Mit Essig gibt es zusätzlich das Problem, dass die darin enthaltene Essigsäure eine flüchtige organische Säure und somit ein so genannter VOC-Stoff ist, welcher die Innenraumluft belastet. Reinigungsmittel mit einem Umweltzeichen enthalten darum zumeist Zitronensäure , denn Zitronensäure ist nicht flüchtig und auch weniger aggressiv. *Bezüglich der Hygiene im Zusammenhang mit dem Coronavirus verweist das ⁠ UBA ⁠ auf die Ratschläge des Bundesinstituts für Risikobewertung (⁠ BfR ⁠): Kann das neuartige Coronavirus über Lebensmittel und Gegenstände übertragen werden? , Fragen und Antworten zu Nutzen und Risiken von Desinfektionsmitteln im Privathaushalt sowie auf die Informationen der Bundeszentrale für gesundheitliche Aufklärung (BZgA): infektionsschutz.de . Generelle Informationen zur Hygiene finden sich auch unter Hygiene im Privatbereich in unserem Biozid-Portal.

Entwicklung eines ökotoxikologischen Bewertungsansatzes für Böden auf Basis der bioverfügbaren Fraktion von Schadstoffen unter Berücksichtigung der unterschiedlichen Filter- und Puffereigenschaften von Böden

Das Vorhaben hatte das Ziel, ausgehend von den Ergebnissen einer Literaturrecherche primär am Beispiel von Arsen ein Konzept zur Ableitung von vorsorgeorientierten Bodenwerten speziell für den Pfad Boden â€Ì Bodenorganismen auf der Grundlage der bioverfügbaren Anteile von (Halb-)Metallen zu erarbeiten. Zur praktischen Umsetzung wurden ökotoxikologische standardisierte Tests mit acht Bodenorganismen-Arten in sechs unterschiedlichen, bodenkundlich umfassend charakterisierten Feldböden durchgeführt, wobei die jeweilige Metallkonzentration mittels sechs Extraktionsverfahren unterschiedlicher Stärke bestimmt wurde. Für jeden Tests wurden die entsprechenden Effektkonzentrationen (EC10- bzw. EC50-Werte) berechnet. Die Stärke der verschiedenen Extraktionsverfahren nahm für As bei allen Böden in der Reihenfolge Königswasser > HNO3 > DTPA > Ca(NO3)2 >= CaCl2 > NH4NO3 ab. Anschließend wurden die Ergebnisse der in den verschiedenen Böden durchgeführten ökotoxikologischen Tests mit den jeweiligen chemischen Rückstandsdaten zusammengeführt, um diejenige Extraktionsmethode zu identifizieren, die die Bioverfügbarkeit am besten widerspiegelt. Zwei Ansätze zur Ableitung von Bodenwerten wurden identifiziert: entweder auf der Basis der geeignetsten Extraktionsmethodik oder auf der Basis des Gesamtgehalts mit anschließender Normalisierung anhand der jeweiligen Bodeneigenschaften, wobei sich letztere als besser geeignet erwies. Im Einklang mit der Struktur der Bundes-Bodenschutz- und Altlastenverordnung werden folgende vorsorgeorientierte Bodenwerte für die drei Bodenarthauptgruppen vorgeschlagen: Sand = 10 mg/kg; Lehm/Schluff = 30 mg/kg; Ton = 40 mg/kg. Sowohl in Hinsicht auf die in Deutschland vorkommenden Hintergrundgehalte von Arsen als auch im Vergleich mit den Bodenwerten anderer Staaten sind diese Werte als plausibel anzusehen. Analog zum Vorgehen bei Arsen wurden zwei Tests (Arthrobactertest, Regenwurm-Fluchttests) mit Nickel und Kupfer durchgeführt und die Ergebnisse zur Ableitung (zusammen mit vorhandenen Daten) vorsorgeorientierter Bodenwerte genutzt. Quelle: Forschungsbericht

CEEPOx - Entwicklung einer Systemlösung für chemo-elektro-enzymatische Percarbonsäure-vermittelte Oxidationsreaktionen am Beispiel der Erzeugung chiraler Monoterpene

Das Projekt "CEEPOx - Entwicklung einer Systemlösung für chemo-elektro-enzymatische Percarbonsäure-vermittelte Oxidationsreaktionen am Beispiel der Erzeugung chiraler Monoterpene" wird/wurde gefördert durch: Arbeitsgemeinschaft Industrieller Forschungsvereinigungen 'Otto-von-Guericke' e.V.. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Mikrobiologie, Professur für Molekulare Biotechnologie.Oxidationen unter Vermittlung hochreaktiver Persäuren stellen eine wichtige Gruppe chemischer Reaktionen mit vielfältigem synthetischem Potential dar. Hervorzuheben sind beispielsweise die Prileschajew-Oxidation zur Erzeugung von Epoxiden, die Bayer-Villiger-Oxidation zur Synthese von Estern (speziell Lactonen) und die Rubottom-Oxidation zur Darstellung von ?-Hydroxyaldehyden und -ketonen. Bei stöchiometrischem Einsatz der essentiellen Persäuren, beispielsweise m-Chlorperbenzoesäure, ist die Realisierung der Reaktionen im technischen Maßstab jedoch unter ökologischen wie sicherheitstechnischen Aspekten problematisch, da die Bereitstellung der Persäuren zum einen den nicht katalytischen Einsatz starker Mineralsäuren und zum anderen den Transport und die Handhabung konzentrierter Lösungen dieser explosiven Reaktanden in großen Mengen erfordert. Abhilfe kann durch die in situ Erzeugung der Persäuren gekoppelt mit dem direkten Umsatz im Reaktionsverlauf geschaffen werden. Unter besonders milden und umweltverträglichen Bedingungen ist dies bei Verwendung von Biokatalysatoren, konkret Vertretern von (Per)Hydrolasen wie Lipasen und Esterasen, möglich. Zielstellung des Projektes ist die Entwicklung einer Systemlösung zur technischen Realisierung Persäure-vermittelter Oxidationsreaktionen unter elektro-enzymatischer in situ Generation der Persäuren am Beispiel der Prileschajew-Oxidation bicyclischer Monoterpene (z.B. Pinen).

Innovative Techniken: Festlegung von besten verfügbaren Techniken (BVT), in Europa im Bereich der anorganische Chemie: Anorganische Grundchemikalien: Säuren, Ammoniak und Düngemittel sowie Anorganische Grundchemikalien: Feststoffe

Das Projekt "Innovative Techniken: Festlegung von besten verfügbaren Techniken (BVT), in Europa im Bereich der anorganische Chemie: Anorganische Grundchemikalien: Säuren, Ammoniak und Düngemittel sowie Anorganische Grundchemikalien: Feststoffe" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Ökopol Institut für Ökologie und Politik GmbH.Ausgangslage/Zielstellung/Methodik: Ausgangslage: In 2015 soll für 2 BVT-Merkblätter (LVIC-AAF + LVIC-S) die Revision gemäß den Vorgaben der Richtlinie 2010/75/EU über Industrieemissionen (IE-Richtlinie) beginnen (Sevilla-Prozess). Dazu werden von den europäischen Mitgliedsstaaten und der chemischen Industrie anlagenbezogene Daten zum Stand der Technik erhoben. Diese Daten müssen den neuen Leitlinien für die Erhebung von Daten gemäß dem Durchführungsbeschluss der EU-KOM (2012/119/EU) genügen, um im Sevilla-Prozess bei der Festsetzung der besten verfügbaren Techniken und den damit erreichbaren Emissionen berücksichtigt zu werden. Zielstellung: Ziel des Vorhabens ist es, den aktuellen Stand der Technik in Deutschland vor Beginn des Revisionsprozesses zu ermitteln und daraus die besten verfügbaren Techniken für die in den o.g. BVT-Merkblättern behandelten Produktionsprozesse abzuleiten (Frontloading). Die Ergebnisse werden von D in den Informationsaustausch auf europäischer Ebene eingebracht. Methodik: Die Umweltaspekte der zu untersuchenden Produktionsprozesse werden über Anlagenbesichtigungen gemeinsam mit Betreiber, Genehmigungsbehörden und UBA/ Forschungsnehmer erfasst. Diese Aspekte umfassen nicht nur Emissions- und Betriebswerte (einschließlich des dazugehörigen Monitorings), sondern auch Besonderheiten des Produktionsprozesses hinsichtlich Ressourcen- und Energieeffizienz. Mit diesen Kenntnissen kann im Kick-off Meeting ein zielführender Arbeitsplan und ein Vorschlag für den Fragebogen zur Datenerhebung zur Überarbeitung des BREFs festgelegt werden.

Root-derived organic matter in the deep subsoil greater than 2 m depth - what are the consequences for terrestrial carbon cycling and paleoenvironmental records?

Das Projekt "Root-derived organic matter in the deep subsoil greater than 2 m depth - what are the consequences for terrestrial carbon cycling and paleoenvironmental records?" wird/wurde gefördert durch: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Zürich, Geographisches Institut.Roots are currently discussed to store considerable amounts of carbon in the subsoil. Although it is well known that roots can penetrate the subsoil and deep subsoil (greater than 2 m) several meters deep, it remains unclear, how much carbon they contribute, if they lead to net carbon sequestration in the long-term and under which conditions they lead to carbon accumulation. Rhizoliths and biopores are root-related features that frequently occur in soil and underlying soil parent material. Recent studies in unconsolidated sediments show that they enable investigating the long-term effects of root penetration even after the lifetime of the source plant and thus the assessment of sustainable impacts of roots on subsoil organic matter (OM). While other research groups deal with the subsoil less than 2 m, (eg German Research Foundation (DFG) Research Group SUBSOM the current project focuses on the deep subsoil (greater than 2 m), where a significant overprint of OM is expected. In fact, this part of the subsurface is usually not regarded by soil scientists, but of large interest for paleoenvironmental researchers as valid e.g. for loess-paleosol sequences. So far, the effect of roots on subsoil OM was only studied on a single site in SW Germany during a precursor project, DFG (WI2810/10). Based on that project, the current proposal aims at the investigation of the transferability of the results to other sedimentary settings and ecological contexts. At several sites along a NE-SW transect across Europe (from The Netherlands across Germany, Switzerland, Austria, Hungary towards Serbia), unconsolidated material like dune and fluvial sands, as well as loess-paleosol sequences will be investigated with respect to OM quantity and quality as influenced by root penetration. Preliminary investigations of six potential sites in Germany, Hungary and Serbia showed that biopores and other root-related features can reach similar abundances in different settings. Nevertheless, consequences for OM sequestration and turnover may be different, depending not only on the respective source vegetation but also sedimentary properties. The target of the current project is to identify carbon losses or sequestration related to root penetration, which will be assessed by bulk organic and inorganic carbon contents as well as a variety of lipid biomarkers including alkanes, fatty acids, alcohols, glycerol dialkyl glycerol tetraethers and suberin markers. The combination of these biomarkers enables the assessment of root-related overprint, if transects from root features to surrounding material free of them are investigated. The data will be fed into the VERHIB model for source apportionment of sedimentary and root-related OM. (abridged text)

Bildung und Nutzung von amorphem SiO2 (Dissertation)

Das Projekt "Bildung und Nutzung von amorphem SiO2 (Dissertation)" wird/wurde ausgeführt durch: Technische Universität Graz, Institut für Angewandte Geowissenschaften.Die vorliegende Arbeit beinhaltet drei Studien, die sich mit der Bildung und Nutzung von amorphem Siliziumdioxid beschäftigen. Dieses Material ist sowohl in den Geo- als auch in den Materialwissenschaften von großer Bedeutung, da es einerseits natürlich, z.B. in den Schalen von Kieselalgen oder auch als chemisch gefälltes Sediment (u.a. als Feuerstein ), vorkommt, andererseits aufgrund seiner oftmals großen spezifischen Oberfläche und damit hohen Reaktivität künstlich erzeugt und technisch eingesetzt wird, z.B. zur dosierten Freisetzung von Arzneimitteln. Zunächst wurde die Adsorption monomerer und polymerer Kieselsäure an Gibbsit als Funktion des pH-Wertes (3 = pH = 8) und der gelösten Kieselsäurekonzentration (0.34 mmol L-1 = (Si) = 1.47 mmol L-1) untersucht, da die Adsorption eine wichtige Vorstufe der Bildung von amorphen und kristallinen kieselsäurehaltigen Festphasen darstellt. Es wurde festgestellt, dass der relative Anteil adsorbierter Kieselsäure mit zunehmendem pH-Wert (für pH kleiner als 9) und abnehmender initialer Kieselsäurekonzentration steigt. Bei der Adsorption monomerer Kieselsäure wird das leichte Isotop 28Si gegenüber dem schwereren 30Si aufgrund seiner massebedingt höheren Reaktionsgeschwindigkeit bevorzugt fixiert. Die Isotopenfraktionierung ist umso stärker, je höher die initiale Kieselsäurekonzentration ist. Daher kann die Siliziumisotopensignatur von Mineralphasen, die sich durch Adsorptionsprozesse gebildet haben, möglicherweise als Proxy für die Adsorptionsrate verwendet werden. Polymere Kieselsäure wird rascher adsorbiert als monomere Kieselsäure und zerfällt an der Mineraloberfläche und in der Lösung, so dass am Ende der Versuche nur noch monomere Kieselsäure in der Lösung vorliegt. Darauf aufbauend wurde amorphes Siliziumdioxid durch zyklisches Gefrieren wässriger Lösungen ausgefällt. Es wurde gezeigt, dass mehr Silizium aus der Lösung entfernt wird, wenn gelöstes Aluminium oder Germanium oder suspendierter Kaolinit vorhanden sind, während die Zugabe von Natriumchlorid die Ausfällung hemmt. Der Anteil an ausgefällter Kieselsäure erreicht für pH-Werte zwischen 5 und 7 ein Maximum und nimmt im sauren und alkalischen Bereich ab. Die Ausfällung von amorphem Siliziumdioxid wird im sauren Milieu von einer Polymerisation der gelösten Kieselsäure begleitet, insbesondere in Gegenwart von Bor, nicht aber in Gegenwart von Germanium. Eine Fraktionierung der Siliziumisotope erfolgt nur in Gegenwart ausreichender Aluminiumkonzentrationen (Al = 1 mmol L-1) bei Übersättigung bzgl. amorphem Aluminiumhydroxid. In den letzteren Fällen wird 28Si gegenüber 30Si bevorzugt im Festkörper fixiert, was durch eine Adsorption an primär gebildeten Aluminiumhydroxid-Präzipitaten oder eine Kopräzipitation einer Si-Al-O-OH-Phase erklärt werden kann. usw.

RECYPHOS: Recycling von Phosphor - Beitrag zur Nachhaltigkeit in der dezentralen Abwasserbehandlung - Teilprojekt A: Untersuchung von Adsorptionsmaterialien zur Abtrennung/Fällung von Phosphat^RECYPHOS: Recycling von Phosphor - Beitrag zur Nachhaltigkeit in der dezentralen Abwasserbehandlung, Teilprojekt B: Technische Umsetzung des Recycling-Verfahrens^RECYPHOS: Recycling von Phosphor - Beitrag zur Nachhaltigkeit in der dezentralen Abwasserbehandlung - Teilprojekt C: Praktische Erprobung des Phosphorrecyclingverfahrens für Kleinkläranlagen^Recycling von Phosphor, Phosphorrecycling - Bewertung von Verfahren und deren Produkten sowie Entwicklung eines Bewertungskonzepts für Deutschland - Teilprojekt: Chemische und ökologische Charakterisierung der Produkte

Das Projekt "RECYPHOS: Recycling von Phosphor - Beitrag zur Nachhaltigkeit in der dezentralen Abwasserbehandlung - Teilprojekt A: Untersuchung von Adsorptionsmaterialien zur Abtrennung/Fällung von Phosphat^RECYPHOS: Recycling von Phosphor - Beitrag zur Nachhaltigkeit in der dezentralen Abwasserbehandlung, Teilprojekt B: Technische Umsetzung des Recycling-Verfahrens^RECYPHOS: Recycling von Phosphor - Beitrag zur Nachhaltigkeit in der dezentralen Abwasserbehandlung - Teilprojekt C: Praktische Erprobung des Phosphorrecyclingverfahrens für Kleinkläranlagen^Recycling von Phosphor, Phosphorrecycling - Bewertung von Verfahren und deren Produkten sowie Entwicklung eines Bewertungskonzepts für Deutschland - Teilprojekt: Chemische und ökologische Charakterisierung der Produkte" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Justus-Liebig-Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement.

1 2 3 4