Das Projekt "Numerische Simulation der Dynamik von Flüssigschlick (MudSim)" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Wasserbau durchgeführt. Problemstellung und Ziel: In vielen Bereichen der Deutschen Küste führt eine zunehmende Verschlickung von Häfen, Hafenzufahrten und Teilabschnitten der Ästuare zu hohen Unterhaltungskosten. Besonders in strömungsberuhigten Zonen akkumuliert der Schlick und konsolidiert letztendlich. Diese konsolidierten Schlickschichten sind nur mit hohem Aufwand zu mobilisieren oder abzutragen. Fragestellungen des Suspensionstransports werden mit hydrodynamischen numerischen Modellverfahren untersucht. Die derzeitig etablierten und erprobten Modellverfahren sind jedoch kaum in der Lage die Dynamik von Flüssigschlick (fluid mud, hochkonzentrierte Schlicksuspension) zu simulieren. Dies begründet sich in den besonderen rheologischen Eigenschaften von Flüssigschlick. Das Fließverhalten von Flüssigschlick entspricht nicht einem Newtonschen Fluid, wie Klarwasser. Jedoch basieren die hydrodynamischen numerischen Modelle in der Regel auf diesem Ansatz. In diesem Forschungsprojekt soll daher ein bestehendes und bewährtes hydrodynamisches Modellverfahren für die Simulation von Flüssigschlick erweitert werden. Bedeutung für die WSV: Mit Hilfe des Verfahrens MudSim sollen zukünftig erforderliche Maßnahmen auch in ihrer Wirkung auf Schlicktransport und Schlickakkumulation untersucht werden können, um Bau- und Unterhaltungsmaßnahmen im Hinblick auf die Minimierung dieser Prozesse ausrichten zu können. Zudem sollen hiermit bestehende und zukünftige Managementstrategien zur Umlagerung und Unterbringung hoch konzentrierter Schlicksuspensionen und konsolidierter Schlicke verbessert werden. Untersuchungsmethoden: Grundlegend für die Entwicklung neuer Methoden zur numerischen Simulation von Flüssigschlick sind die Erforschung rheologischer Eigenschaften und die Bestimmung der charakterisierenden Parameter zur Beschreibung von Flüssigschlick. Einer der wichtigsten charakterisierenden Parameter für das Verhalten von Flüssigschlick ist der Feststoffgehalt, bzw. die dazu proportionale Dichte. Dieser Parameter wird für die numerische Modellierung genutzt, indem der Wasserkörper und die Schlicksuspension in Schichten gleicher Dichte unter Annahme einer stabilen Schichtung unterteilt werden. Diese Schichten gleicher Dichte, Isopyknen, bilden die vertikale Diskretisierung im Modell. Jeder Isopykne wird ein bestimmtes rheologisches Verhalten (Newtonsches, nicht-Newtonsches Fluid) zugeordnet. Der konzeptionelle isopyknische Modellansatz ist besonders für die Modellierung stark geschichteter Strömungen geeignet. Das isopyknische Modell ist um die entscheidenden Transportprozesse wie Deposition, Konsolidierung, Entrainment und Fluidisierung sowie um rheologische Ansätze für Schlicksuspensionen zu erweitern. Die Rheologie von Flüssigschlick wird über den Spannungstensor im Modell realisiert. Durch rheometrische Laboruntersuchurigen werden Zusammenhänge von Schubspannung und Scherrate sowie Viskosität und Scherrate in Abhängigkeit von der Suspensionskonzentration ermittelt. usw.
Das Projekt "COMPRENDO - Vergleichende Forschung zu Endokrinen Disruptoren: Ein phylogenetischer Ansatz mit Schwerpunkt auf die allgemeinen Wirkprinzipien androgener/antiandrogener Substanzen" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Ökologie, Evolution und Diversität, Abteilung Aquatische Ökotoxikologie durchgeführt. The overall goal of COMPRENDO is to improve our understanding of the effects of endocrine disrupting chemicals (EDCs) on aquatic wildlife and humans, focussing on androgenic and antiandrogenic compounds (AACs). This will help to improve environmental quality standards and also the public health in the European Community. To this end our key objectives are: Characterise the human and environmental exposure to AACs; Determine the impacts of environmentally relevant doses/concentrations of AACs on a wide range of human-relevant models and aquatic species; Develop new biological effect measures and species-specific critical endpoints, including a molecular screen for genomic effects of AACs; Identify common principles of AAC action in different species to develop new animal models for extrapolation to human health; Develop lab cultures for suitable aquatic invertebrates and establish their baseline endocrinology; Characterise the risk originating from AACs in humans and wildlife. The COMPRENDO consortium consists of 13 partners and five subcontractors of 10 European nations (Germany: University of Frankfurt; University Hospital Bonn, Institute for Clinical Biochemistry; Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, U.K.: University of Exeter, University of Brunel; Sweden: University of Lund; Denmark: Technical University of Denmark; France: Bureau de Recherches Geologiques et Minieres; Spain: Consejo Superior de Investigationes Cientificas; Italy: University of Milan, University of Insubria; Greece: University of Ioannina; Poland: University of Gdansk.