API src

Found 893 results.

Related terms

Diversität und Nutzung von Pilzen im tropischen Afrika

Komplexitätsreduktion für Wärmepumpen-Hybridsysteme der Zukunft, Teilvorhaben: Vereinfachte Bewertungsverfahren und automatisierte Fehlerdetektion

Das Projekt 'Future-Hybrid' soll die Hürden für den Einbau von Hybrid-Wärmepumpen in Bestandsgebäuden erheblich senken. Methodisch wird dies durch die Entwicklung eines komplexitäts-reduzierten Systemkonzepts in Kombination mit einem modularen Zertifizierungssystem erreicht. Dies beinhaltet die Teilintegration, Vorkonfektionierung der Systemkomponenten und eine vereinfachte Zertifizierungsmethodik, welche zu einer Reduktion von Initialkosten führen soll. Darauf aufbauend soll ein angepasstes Verfahren zur Anlagenauslegung und vereinfachten, qualitätssichernden Inbetriebnahme entwickelt werden. Um eine hohe Anlagenperformance während der Nutzungsdauer zu gewährleisten ist auch eine automatisierte Anlagenüberwachung Ziel der Entwicklungen. Dabei werden Expertenwissen und KI-basierte Ansätze gegeneinander bewertet. Randbedingung ist die Umsetzbarkeit auf dem Gerät selbst, um eine hohe Verfügbarkeit auch ohne Cloud-Anbindung zu gewährleisten. In Hinsicht auf perspektivisch verfügbare synthetische Energieträger wird ein Baumuster für ein greenfuel-nutzendes Hybridsystem entwickelt. Die entwickelten Komponenten und Werkzeuge werden im Labor sowie in einem Bestandsgebäude erprobt, demonstriert und bewertet.

Digitale Prüfplattform für die Fahrzeug- und Zuliefererindustrie (DigiPrueF)

SP 1.5 Molekulare Charakterisierung von gelösten organischen Stoffen in der Meeresoberflächen-Mikroschicht (SML) und deren Einfluss auf den anorganischen Kohlenstoffkreislauf

Unsere Motivation ist es, die Rolle von gelöstem organischem Material (DOM) in marinen Oberflächenfilmen (SML) als eine Schlüsselkomponente zu verstehen, die den Gasaustausch zwischen Atmosphäre und Meer, die Karbonatchemie, sowie die Ökophysiologie der assoziierten Organismen beeinflusst (Engel et al., 2017). Während unserer Vorarbeiten haben wir Hinweise auf einen bisher unbekannten Zusammenhang zwischen DOM und Karbonatchemie in der SML gefunden, sowie auf eine hohe räumlich-zeitliche Dynamik in der DOM-Zusammensetzung. Obwohl die hohe Heterogenität des SML-DOM-Geometabolom (d.h. die Gesamtheit des DOM-Pools, der durch biotische und abiotische Prozesse produziert und modifiziert wird) bekannt ist, gibt es wenige detaillierte Studien darüber. Insgesamt gibt es noch kein mechanistisches Verständnis darüber, unter welchen Bedingungen DOM in der SML in verschiedene chemische Fraktionen aufgeteilt wird. Dies liegt an der derzeit geringen Verfügbarkeit von Daten von einer größeren Anzahl von Untersuchungsstandorten unter unterschiedlichen Umwelt- und Versuchsbedingungen, sowie an einen Mangel an interdisziplinären Studien, die Physik, Geochemie und Biologie kombinieren. Mit anderen Worten, uns fehlen grundlegende (organo-)geochemische Informationen von der größten Luft-Wasser-Grenzfläche der Erde, mit unbekannten Konsequenzen für den damit verbundenen Austausch von klimarelevanten Gasen. In diesem Projekt streben wir an, diese Lücke durch sich ergänzende Messungen der DOM-Zusammensetzung und anorganischer Kohlenstoff-Systemparameter zu schließen. Die Relevanz für die Forschungseinheit BASS ergibt sich aus dem Ziel unseres Teilprojekts, die fehlenden grundlegenden biogeochemischen Informationen des SML-DOM-Inventars zur Verfügung zu stellen und sie in den Kontext der Ökosystemprozesse in der SML zu setzen, einschließlich der DOM-Produktion (SP1.1) sowie des mikrobiellen (SP1.2) und photochemischen (SP1.4) Umsatzes. Darüber hinaus werden wir den Beitrag des DOM-Geometaboloms zum Säure-Basen-Gleichgewicht der SML untersuchen, von dem wir erwarten, dass es die Gasgleichgewichte in der Grenzfläche - insbesondere im Kohlensäuresystem und damit auch die Treibhausgasflüsse - beeinflusst (SP2.1).

WIR! - rECOmine - TERZINN II

Forest management in the Earth system

The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.

Water use characteristics of bamboo (South China)

Bamboos (Poaceae) are widespread in tropical and subtropical forests. Particularly in Asia, bamboos are cultivated by smallholders and increasingly in large plantations. In contrast to trees, reliable assessments of water use characteristics for bamboo are very scarce. Recently we tested a set of methods for assessing bamboo water use and obtained first results. Objectives of the proposed project are (1) to further test and develop the methods, (2) to compare the water use of different bamboo species, (3) to analyze the water use to bamboo size relationship across species, and (4) to assess effects of bamboo culm density on the stand-level transpiration. The study shall be conducted in South China where bamboos are very abundant. It is planned to work in a common garden (method testing), a botanical garden (species comparison, water use to size relationship), and on-farm (effects of culm density). Method testing will include a variety of approaches (thermal dissipation probes, stem heat balance, deuterium tracing and gravimetry), whereas subsequent steps will be based on thermal methods. The results may contribute to an improved understanding of bamboo water use characteristics and a more appropriate management of bamboo with respect to water resources.

AZV Project West Greenland

The AZV (Altitudinal Zonation of Vegetation) Project was initiated in the year 2002. On the basis of a detailed regional study in continental West Greenland the knowledge about altitudinal vegetation zonation in the Arctic is aimed to be enhanced. The main objectives of the project are: a) considering the regional study: characterize mountain vegetation with regard to flora, vegetation types, vegetation pattern and habitat conditions, investigate the differentiation of these vegetation characteristics along the altitudinal gradient, develop concepts about altitudinal indicator values of species and plant communities, extract suitable characteristics for the distinction and delimitation of vegetation belts, assess altitudinal borderlines of vegetation belts in the study area. b) considering generalizations: test the validity of the altitudinal zonation hypothesis of the Circumpolar Arctic Vegetation Map ( CAVM Team 2003), find important determinants of altitudinal vegetation zonation in the Arctic, develop a first small scale vegetation map of entire continental West Greenland. Field work consists of vegetational surveys according to the Braun-Blanquet approach, transect studies, soil analyses, long-time-measurements of temperature on the soil surface and vegetation mapping in three different altitudinal vegetation belts (up to 1070 m a.s.l.).

Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)

Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.

Origin and fate of dissolved organic matter in the subsoil

Dissolved organic matter (DOM) is one major source of subsoil organic matter (OM). P5 aims at quantifying the impact of DOM input, transport, and transformation to the OC storage in the subsoil environment. The central hypotheses of this proposal are that in matric soil the increasing 14C age of organic carbon (OC) with soil depth is due to a cascade effect, thus, leading to old OC in young subsoil, whereas within preferential flowpaths sorptive stabilization is weak, and young and bioa-vailable DOM is translocated to the subsoil at high quantities. These hypotheses will be tested by a combination of DOC flux measurements with the comparative analysis of the composition and the turnover of DOM and mineral-associated OM. The work programme utilizes a DOM monitoring at the Grinderwald subsoil observatory, supplemented by defined experiments under field and labora-tory conditions, and laboratory DOM leaching experiments on soils of regional variability. A central aspect of the experiments is the link of a 13C-leaf litter labelling experiment to the 14C age of DOM and OM. With that P5 contributes to the grand goal of the research unit and addresses the general hypotheses that subsoil OM largely consists of displaced and old OM from overlying horizons, the sorption capacity of DOM and the pool size of mineral-associated OM are controlled by interaction with minerals, and that preferential flowpaths represent 'hot spots' of high substrate availability.

1 2 3 4 588 89 90