This dataset includes updated versions of high-resolution age models derived from six sedimentary cores collected from the southwestern Svalbard margin. The dataset presented here represents a refinement of a previous version (Caricchi et al., 2020; 2022), achieved through correlation of the stratigraphic trends of the ARM/k parameter with the GICC05modelext timescale and the NGRIP record (Rasmussen et al., 2014). Additional refinement was obtained from newly acquired and recalibrated radiometric data, as well as from improved lithological constraints. The dataset enables the calculation of sedimentation rates during glacial and interglacial periods and during short-lived, widespread meltwater pulses and Heinrich-like events, thereby allowing the reconstruction of ice-sheet instability and meltwater events along the Svalbard–Barents Sea margin over the last 60,000 years.
Seit 1988 befasst sich das am Institut fuer Landespflege angesiedelte Langzeitforschungsvorhaben 'Karupelv Valley Projekt' mit den Ursachen der Populationszyklen von Lemmingen. Das Untersuchungsgebiet in Nordost Groenland ist Bestandteil der High Arctic Tundra und zeichnet sich durch eine einfach strukturierte Tiergemeinschaft aus. Durch jaehrliche flaechendeckende Bestandsaufnahmen und die Erfassung von Lemmingwinternestern auf einer Untersuchungsflaeche von ca 1000 ha werden sowohl die Populationsfluktuationen der Lemminge als auch die ihrer Raubfeinde dokumentiert. Die bisherigen Ergebnisse deuten auf eine verzoegerte dichteabhaengige Reaktion der Hermeline auf die Lemmingausbrueche hin. Dieser Hypothese soll nun durch Einsatz von Telemetrie im Rahmen des naechsten Zyklus naeher geprueft werden. An dem internationalen Projekt sind auch die Universitaeten Helsinki, Stockholm und Kopenhagen beteiligt.
The goal of this project is to quantify freshwater fluxes in the ocean, and improve our understanding of their temporal and spatial changes in terms of the interaction between ocean transport processes, surface net freshwater fluxes and river run-off, as well as mixing processes in the ocean. In particular, we aim at combining all available ocean salinity/freshwater data (including novel satellite-based salinity retrievals and ARGO data), surface freshwater fluxes (including HOAPS and NCEP net surface freshwater fluxes) and river discharge with a numerical model to improve our understanding of net surface sources of freshwater, near-surface freshwater budgets, and full-depth ocean freshwater transports. Respective sub-goals entail: -Improving the quality of SMOS and Aquarius surface salinity data and estimating respective error information required for their subsequent analysis and assimilation. - Expansion of the GECCO data assimilation system to incorporate surface salinity fields. - Evaluation of the sensitivity of subsurface salinity to freshwater fluxes (incl. run-off), surface salinity fields and subsurface salinity changes. - Estimates of surface and subsurface salinity fields, ocean transports of freshwater (including surface freshwater fluxes) from monthly mean SMOS and Aquarius fields, ARGO salinities and underway salinity measurements. - Quantifying the role of surface forcing (E-P-R) versus lateral transports and mixing of freshwater in modulating the freshwater content as function of depths and geographical position. Providing a best possible description of salinity changes and underlying processes in the Atlantic Ocean.
This data collection unites the individual data sets of the COMPEX-EC (Clouds over cOMPlEX environment - EarthCARE) campaign, carried out in Kiruna 2.-16.4.2025. COMPEX-EC has been designed as an EarthCARE validation campaign. For that purpose, Polar 5 (C-GAWI) has been equipped with instrumentation similar to the one operated on EarthCARE (W-band radar, lidar, radiometers, spectral imagers). Seven research flights (summing up to more than 30 flight hours) were conducted each of them underflying the EarthCARE satellite to validate its performance.
NCEI's global ocean sediment thickness grid of Divins (2003) updated by Whittaker et al. (2013) has been updated again for the NE Atlantic, Arctic, Southern Ocean, and Mediterranean regions. The new global 5‐arc‐minute total sediment thickness grid, GlobSed, incorporates new data and several regional oceanic sediment thickness maps, which have been compiled and published for the, (1) NE Atlantic (Funck et al., 2017; Hopper et al., 2014), (2) Mediterranean (Molinari & Morelli, 2011), (3) Arctic (Petrov et al., 2016), (4) Weddell Sea (Huang et al., 2014), and (5) the Ross Sea, Amundsen Sea, and Bellingshausen Sea sectors off West Antarctica (Lindeque et al., 2016; Wobbe et al., 2014). This version also includes updates in the White Sea region based on the VSEGEI map of Orlov and Fedorov (2001). GlobSed covers a larger area than NCEI's previous global grids (Divins, 2003; Whittaker et al. 2013), and the new updates results in a 29.7% increase in estimated total oceanic sediment volume. This dataset has been archived in the framework of the PANGAEA US data rescue initiative 2025.
Weite Teile der nördlichen Ostsee sind im Winter für mehrere Monate von Meereis bedeckt. Wie in Arktis und Antarktis stellt das solegefüllte Kanalsystem im Eis den Lebensraum für eine diverse Flora und Fauna dar. Bereits im Februar beginnen die Eisalgen zu wachsen und hohe Biomassen im Eis aufzubauen. In den Polargebieten wird diese saisonal früh vorhandene und lokal hoch konzentrierte Nahrungsquelle von herbivoren, pelagischen Zooplanktern genutzt, die somit eine trophische Verbindung zwischen den beiden Lebensräumen Meereis und Pelagial herstellen. Auch in der Ostsee kommen v.a. Copepoden unter dem Meereis vor. Die Art Acartia biflosa reproduziert sogar während der Wintermonate, obwohl Temperatur und Algenbiomasse während der eisbedeckten Zeit in der Wassersäule sehr niedrig sind. Hieraus ergeben sich folgende Fragestellungen: 1. Welche biotischen und abiotischen Wachstumsbedingungen charakterisieren das baltische Untereis-Habitat? 2. Was sind die Energiequellen für die Entwicklung im Winter dominanter Arten? 3. Gibt es in der eisbedeckten Ostsee vergleichbare Prozesse wie in Arktis und Antarktis? Das übergeordnete Ziel des Forschungsvorhabens ist die Erfassung der ökologischen Bedeutung des Meereises für die saisonalen Lebenszyklen und Überwinterungsstrategien des Zooplanktons der nördlichen Ostsee.
Das stetig steigende globale Mikroplastik-Vorkommen bezieht auch das empfindliche Ökosystem der Arktis mit ein. Die AMAP-Arbeitsgruppe des Arktischen Rates zielt deshalb darauf ab, ein reguläres Monitoring zu etablieren, welches sowohl die Entwicklung der Mikroplastikbelastung erfasst als auch die Auswirkungen auf das Ökosystem überwacht. Für diesen Zweck ist es erforderlich grundlegende Informationen zu sammeln und ein standardisiertes Monitoring zu entwickeln, um durch eine längerfristige Datenerhebung Entwicklungen zu erfassen und negative Veränderungen mit effektiven Maßnahmen entgegenzuwirken. Monitoring an Tierpopulationen erfolgt derzeit an Seevögeln und Fischen. Marine Großsäuger und insbesondere Top-Prädatoren (die der indigenen Bevölkerung teilweise auch noch als Nahrungsgrundlage dienen) wurden bisher weniger stark berücksichtigt, sind jedoch auch für die AMAP-AG von Interesse und Bedeutung. Innerhalb des Projektes werden repräsentative Arten der Arktis untersucht: Wale, Robben, Eisbären und Otter. Die Probennahme geschieht in Kooperation mit arktischen Partnern und zielt darauf ab Daten zur Mikroplastikbelastung der Tiere zu generieren.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Deutschland möchte mit der Fortführung der Forschung an einer Methode zur möglichst automatisierten Erkennung von Müll an arktischen Küsten weiterhin die Arktischen Staaten dabei unterstützen, ein arktisweit einheitliches (oder zumindest vergleichbares) Verfahren zu etablieren, das es ermöglicht, den Umweltzustand arktischer Küstenabschnitte hinsichtlich des Vorhandenseins von Müll jetzt und in Zukunft zu erfassen und zu bewerten. Ziel des Projektes ist es, eine Methode zu entwickeln, mittels derer Küsten- und Stranduntersuchungen in der Arktis per Drohne durchgeführt werden können. Bei der Erarbeitung der entsprechenden Methodik liegt der Fokus auf der Ermittlung arktisspezifischer Parameter und der automatisierten Auswertung gewonnener Daten. Die Konzeption soll zunächst an geeigneten Teststränden oder Gebieten in Deutschland erfolgen und dann in der Arktis validiert werden. Des Weiteren sind Konzepte zu erarbeiten, wie beispielsweise arktische Gemeinden, lokale Forschungseinrichtungen oder auch andere Stakeholder wie etwa Reiseunternehmen, die im Arktisraum agieren, die Methode anwenden können. Im Zuge der automatisierten Auswertung soll eine KI entwickelt und trainiert werden, mit der die generelle Detektion von Kunststoffmüll an Küsten und Stränden in der Arktis möglich ist und ggf. auch eine automatisierte Kategorisierung der Müllteile erfolgen kann.
Der Antarktische Ozean ist mit Chlorophyllgehalten von weniger als 0,3 my g per Liter und Primärproduktionsraten von weniger als 50 mg C pro m2 pro Tag extrem nährstoffarm oder ultraoligotroph. In den Wintermonaten mit kaum messbarer Photosynthese werden die biologischen Umsetzungen im Pelagial im wesentlichen von den Bakterien dominiert. So konnten obligat und fakultativ oligotrophe Bakterien als die dominante Population über den Gunnerus- und Astrid-Rücken im Antarktischen Ozean nachgewiesen werden. Sie machten hier mit etwa 10 Prozent der gesamten Bakterienzahlen einen beträchtlichen Anteil der kultivierbaren Bakterien aus. Der Arktische Ozean ist dagegen starken terrestrischen Einflüssen durch die Einträge größerer Wasserfrachten von sibirischen Flüßen ausgesetzt. Maximale Produktionsraten von 1320 mg pro m2 pro Tag wurden im Sommer in der Frobisher Bay, Kanada, gemessen. Die Chlorophyllkonzentrationen im Meerwasser schwankten in Abhängigkeit der Wassertiefe zwischen 0,22 und 1,4 my g pro Liter im nördlichen Foxe Basin, im östlichen Teil der kanadischen Arktis. Von 9 Stationen in der Framstraße und der westlichen Grönlandsee konnten obligat oligotrophe Bakterien nur an einer Station nachgewiesen werden. Die Abundanz und Struktur oligotropher Bakteriengemeinschaften in Nord- und Südpolarmeer soll nun mit klassischen und molekularbiologischen Methoden eingehender untersucht werden. Es wird erwartet, dass nach Anreicherung der oligotrophen Bakterien in der Dialysekammer durch den Einsatz der Laserpinzette und Einzelzellkultivierungen der Anteil und die Diversität der oligotrophen Isolate erheblich vergrößert werden können.
| Origin | Count |
|---|---|
| Bund | 934 |
| Global | 3 |
| Land | 34 |
| Wissenschaft | 182 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 157 |
| Ereignis | 76 |
| Förderprogramm | 783 |
| Repositorium | 2 |
| Taxon | 19 |
| Text | 37 |
| unbekannt | 70 |
| License | Count |
|---|---|
| geschlossen | 84 |
| offen | 1025 |
| unbekannt | 16 |
| Language | Count |
|---|---|
| Deutsch | 688 |
| Englisch | 565 |
| Resource type | Count |
|---|---|
| Archiv | 61 |
| Bild | 3 |
| Datei | 149 |
| Dokument | 49 |
| Keine | 587 |
| Unbekannt | 22 |
| Webdienst | 4 |
| Webseite | 362 |
| Topic | Count |
|---|---|
| Boden | 811 |
| Lebewesen und Lebensräume | 1122 |
| Luft | 847 |
| Mensch und Umwelt | 1119 |
| Wasser | 924 |
| Weitere | 988 |