Wirkungen von Arsen Bei den gesundheitsschädigenden Wirkungen durch Arsen und seinen Verbindungen steht dessen kanzerogene Wirkung im Vordergrund. Dies gilt sowohl für die inhalative als auch für die orale Aufnahme. Inhalativ aufgenommenes Arsen ist nach der Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe der Deutschen Forschungsgemeinschaft (DFG) ein erwiesenes Humankanzerogen. Diese stuft Arsen und anorganische Arsenverbindungen (Arsenmetall, Arsentrioxid, arsenige Säure und ihre Salze, Arsenpentoxid, Arsensäure und ihre Salze und Kalziumarsenat) als einen Stoff ein, der beim Menschen Krebs erzeugt und bei dem davon auszugehen ist, dass er einen nennenswerten Beitrag zum Krebsrisiko leistet (Krebserzeugende Kategorie 1). Bei Personen mit beruflich bedingter langfristiger inhalativer Exposition gegenüber Arsen (vorwiegend Arsentrioxid) wurden zudem insbesondere Hautläsionen, Neuropathien und kardiovaskuläre Effekte beobachtet. Die Toxizität der verschiedenen Arsenverbindungen nach langfristiger inhalativer Aufnahme dürfte insbesondere von der Wasserlöslichkeit abhängig sein. Ferner gibt es deutliche Hinweise für eine Erhöhung des Risikos an Diabetes zu erkranken, wenn eine chronisch erhöhte Belastung am Arbeitsplatz oder durch Trinkwasser vorliegt. Akute Wirkungen nach inhalativer Exposition sind vor allem Reizeffekte auf Schleimhäute und exponierte Hautpartien. Darüber hinaus treten Schädigungen des Immunsystems sowie fruchtschädigende Effekte auf. Anorganische Arsenverbindungen sind hier im Vergleich zu anderen Arsenverbindungen weitaus toxischer. Untersuchungen zu Kurzzeit- und Langzeitwirkungen von Arsen und seinen Verbindungen beruhen in erster Linie auf einer Exposition gegenüber Arsentrioxid. Bewertungsmaßstäbe Zur Bewertung der möglichen gesundheitlichen Wirkungen nach langfristiger inhalativer Exposition gegenüber Arsen ist im Rahmen der Luftreinhalteplanung der Zielwert der 39. BImSchV von 6 ng/m³ maßgebend. Ein Zielwert ist nach 39. BImSchV „ ... ist ein Wert, der mit dem Ziel festgelegt wird, schädliche Auswirkungen auf die menschliche Gesundheit oder die Umwelt insgesamt zu vermeiden, zu verhindern oder zu verringern, und der nach Möglichkeit innerhalb eines bestimmten Zeitraums eingehalten werden muss.“ Der Zielwert der 39. BImSchV basiert auf dem Zielwert der "Richtlinie 2004/107/EG des europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen, Kadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in der Luft". Diese EU-Richtlinie inklusive des Zielwertes für Arsen wurde durch die 39. BImSchV in bundesdeutsches Recht umgesetzt. Zur Bewertung im Rahmen der Anlagengenehmigung und -überwachung nach Bundes-Immissionsschutzgesetz (BImSchG) bzw. der Sonderfallprüfung nach Nr. 4.8 TA Luft (Technische Anleitung zur Reinhaltung der Luft) kann der Orientierungswert des Länderausschuss für Immissionsschutz 1 (LAI 2004) von 6 ng/m 3 herangezogen werden. Der LAI hatte sich bei der Ableitung des Orientierungswertes für Arsen an dem Zielwert der EU "Richtlinie 2004/107/EG des europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen, Kadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in der Luft" orientiert. (Stand: Januar 2022) 1 jetzt Bund/Länder-Arbeitsgemeinschaft Immissionsschutz
Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Arsen(III)-oxid (di-Arsentrioxid Arsenik). Stoffart: Stoffklasse.
Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Arsentrioxid. Stoffart: Stoffklasse. Inhalt des Regelwerks: Das Globally Harmonised System of Classification and Labelling of Chemicals (GHS) wurde auf UN-Ebene erarbeitet, mit dem Ziel, weltweit einen sicheren Transport zu gewährleisten, die menschliche Gesundheit und Umwelt besser zu schützen. Die Verordnung (EG) Nr. 1272/ 2008 (CLP) legt orientierend an GHS einheitliche Regeln für die Bewertung der Gefährlichkeit von chemischen Stoffen und Gemischen fest (Einstufung). Für physikalische Gefahren, Gesundheits- und Umweltgefahren definiert sie Gefahrenklassen. Eine Gefahrenklasse ist unterteilt in Gefahrenkategorien je nach Schwere der Gefahr. Jeder Gefahrenkategorie sind ein Gefahrensatz, ein Piktogramm sowie ein Signalwort zugeordnet. Aufgrund dieser Einstufungen werden in der CLP-Verordnung verbindliche Kennzeichnungen auf Verpackungen wie Piktogramme und Gefahrenhinweise vorgeschrieben. Die Abverkaufsfrist für Gemische, die bereits vor dem 1.06.2015 verpackt wurden und noch nach alter Einstufung (R-Sätze) gekennzeichnet sind, lief als letzte Übergangsfrist am 01.06.2017 ab. Hersteller/ Importeure von Stoffen sind verpflichtet, innerhalb eines Monats nach Inverkehrbringen, ihre Angaben der Europäischen Chemikalienagentur (ECHA) zur Hinterlegung im öffentlich zugänglichen europäischen Einstufungs- und Kennzeichnungsverzeichnis (CL Inventory) zu melden. Die von der ECHA gepflegte Datenbank enthält Informationen zur Einstufung und Kennzeichnung (C&L) von angemeldeten und registrierten Stoffen, die Hersteller und Importeure übermittelt haben, einschließlich einer Liste harmonisierter Einstufungen. Um eine gesundheitliche Notversorgung und vorbeugende Maßnahmen künftig besser abzusichern, gelten ab dem 01.06.2020 für Gemische, die aufgrund ihrer Wirkungen als gefährlich eingestuft sind, einheitliche Informationspflichten in allen Mitgliedsstaaten. Importeure und nachgeschaltete Anwender sind verpflichtet, diese Informationen den dafür autorisierten nationalen Stellen, in Deutschland dem BfR vorzulegen..
Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Arsentrioxid. Stoffart: Stoffklasse. Inhalt des Regelwerks: Die REACH-Verordnung (zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe) sieht einen umfassenden Rechtsrahmen für die Herstellung und Verwendung chemischer Stoffe in Europa vor..
Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Diarsentrioxid; Arsentrioxid. Stoffart: Stoffklasse.
Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Arsentrioxid. Stoffart: Stoffklasse.
Das Projekt "Teilvorhaben 5: PGE-Mobilisierung in oxidierten und verwitterten Erzen" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Mineralogie durchgeführt. Es werden Experimente unter definierten Bedingungen durchgeführt, um Parameter zu erhalten, die für die Mobilität und Umverteilung von Platinmetallen (PGE) im oberflächennahen Bereich (Oxidation) von Bedeutung sind. Das metallurgische Ausbringen von PGE in oxidierten Erzen ist bekannterweise sehr niedrig. Dieser Befund ist bedingt durch die Remobilisierung der PGE unter supergenen Bedingungen. Theoretische Studien deuten darauf hin, dass auch die PGE unter oxidierenden Bedingungen und in sauren, Chlorid-reichen Lösungen mobil sind. Gelöstes organisches Material kann ebenso eine wichtige Rolle spielen. Experimentelle Untersuchungen für die PGE fehlen jedoch bisher. Experimente werden mit PGE-haltigen Sulfiden und Telluriden durchgeführt, um die Konzentrationen der PGE in wässrigen Lösungen nach Reaktion mit PGE-haltigen Mineralen zu ermitteln. Die Rolle von Chlor und organischem Material in Lösungen wird ermittelt. Um zu verstehen, welche Phasen die Mobilität von Pt und Pd wesentlich kontrollieren, werden Experimente mit speziellen Mineralphasen durchgeführt, die im Bushveld-Komplex von Bedeutung sind: Sulfide, Telluride oder Arsenide. Die Experimente werden über unterschiedliche Zeiträume durchgeführt und die nach Reaktion mit den Mineralen erhaltenen PGEs in der Lösung werden mit ICP-MS Analysen und Voltametrie untersucht. Die Experimente werden in Kombination mit den Untersuchungen der frischen und oxidierten Erze sowie jener der Übergangszone dazu beitragen zu ermitteln (1) welche PGE-haltigen Phasen bevorzugt oxidiert werden, (2) welche Fluide effizient bei der Mobilisierung der PGE sind, und (3) welche Unterschiede in der Mobilität der verschiedenen PGE existieren.
Das Projekt "Teilvorhaben: Erforschung des human- und ökotoxikologisch relevanten Löslichkeits- und Reaktionsverhaltens von GaAs sowie verwandter Arsenide und Antimonide" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Anorganische Chemie durchgeführt. Das Ziel des vom Bundesforschungsministerium geförderten Verbundprojekts TEMPO (Toxikologische, physikalisch-chemische und gesellschaftliche Erforschung innovativer Materialien und Prozesse der Optoelektronik) besteht darin, diese wissenschaftliche Grundlage für die Stoffe Galliumarsenid, Galliumnitrid, Siliziumcarbid, Indiumphosphid, Indiumarsenid und Galliumantimonid substanziell mit einem ganzheitlichen Ansatz zu vertiefen. Dazu wird vorhandenes (Material-)Wissen konzentriert, es werden Wissensdefizite identifiziert und durch experimentelle Untersuchungen, u.a. zu toxikologischen Schlüsselfragen wie Lungenwechselwirkungen und Bioverfügbarkeit, geschlossen. Der Projektschwerpunkt liegt darüber hinaus auch auf der Analyse der Expositionsrisiken und der vorhandenen Risikomanagementpraxis während des ganzen Lebenszyklus der betreffenden Stoffe von den Arbeitsplätzen bei der Herstellung bis hin zum Produktrecycling. Das Hauptziel des vorliegenden TEMPO-Teilprojektes ist es, die Kenntnisse zum Stand des chemisch-physikalischen Löslichkeitsverhaltens von Galliumarsenid und anderen strategischen Halbleitermaterialien der Opto- und Elektronikindustrie über den Stand der Literatur hinaus zu erweitern. Dabei stehen unterschiedliche in den Prozessen auftretende Materialarten und umwelttypische Löslichkeitsbedingungen hinsichtlich toxikologischer Relevanz im Fokus. Die existierenden Datenlücken sollen identifiziert und so weit wie möglich im Projekt geschlossen werden. Zum Erreichen dieser Ziele gibt es einen engen Austausch mit den Projektpartnern.
Das Projekt "Arsen und Fluor in der semiariden Region Chaco, Argentinien" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fakultät für Biologie, Chemie und Geowissenschaften - Umweltgeochemie durchgeführt. Mit der Entwicklung nachweisstarker Analysenmethoden im frühen 19. Jhd. ließ der beliebte Einsatz des Giftes Arsen nach; in den 1990ern kam es aufgrund seiner chronisch toxischen Wirkung zurück in die Schlagzeilen. Als 'biggest mass poisoning in human history' wurden Krebserkrankungen infolge natürlich erhöhter As-Gehalte in Grundwässern Asiens bezeichnet. Einige Länder Südamerikas sind mit ähnlichen Problemen konfrontiert, die bis heute allerdings weit weniger Publicity und Forschungsaktivitäten erzeugt haben. Am LS Analytische Chemie (Prof. Dr. Clara Pasquali) der Universität Santiago del Estero wird seit 2006 zum Thema Wasserqualität mit Fokus auf Arsen geforscht, gefördert durch das Programm 'Voluntariado Universitario'. Die Idee ist, Studenten auf Volontärbasis in Forschungsprojekte einzubeziehen und einen unmittelbaren Nutzen für die Gesellschaft hervorzubringen. Allein in der semiariden Region Chaco steht für 1.2 Mio. Einwohner nur Grundwasser als Trink-, Tränk- und Brauchwasser zur Verfügung. Eine Fläche von 1 Mio. km2 weist As-Gehalte auf, die den Trinkwasser-Grenzwert (10 ug/L) um ein Vielfaches überschreiten. Die Quelle sind Vulkanaschen tertiärer und quartärer Sedimente (As 6-10 mg/kg). Eine Besonderheit dieses vulkanischen Ursprungs sind die gleichzeitig erhöhten Fluorgehalte (-500 mg/kg). Fluor ist interessant, da der Bereich zwischen Essentialität (1 mg/L; Karies-Prophylaxe) und Toxizität (größer als 1.5 mg/L Zahnschädigungen, Knochenverhärtungen) sehr klein ist. Wie erhöhte As- und F-Gehalte gemeinsam wirken, ist unklar. Die Arbeitsgruppe von Prof. Pasquali hat in den letzten Jahren hervorragende Arbeit geleistet in der Umweltbildung, der Förderung interdisziplinären Arbeitens zwischen Studenten verschiedener Studiengänge, des Aufbaus einer Forschungsinfrastruktur und der Charakterisierung von Grund- und Oberflächenwässern hinsichtlich ihrer Nutzung sowie As-Gesamtgehalte. Wie in anderen Gebieten Lateinamerikas aber auch fehlt es an Methoden und Ergebnissen zur As-Speziierung. Diese ist Grundvoraussetzung für die Klärung der As-Mobilität (und damit verbunden der Effizienz von Wasseraufbereitungsmaßnahmen) und -Toxizität. Ein Aspekt, der für die Arbeitsgruppe in Bayreuth hohes Forschungspotential verspricht, ist dabei das mögliche Auftreten von As-F-Komplexen. Hexafluorarsenat (AsF6)- entsteht aus der Reaktion von Arsenat mit Fluorit (einem hydrothermalen Mineral) und ist unter natürlichen Bedingungen stabil. Der bislang einzige Nachweis von AsF6- in der Natur stammt aus Industriewässern. Mit 78-100% des Gesamtarsens dominierte AsF6- dort die As-Speziierung, weit vor den sonst bekannten anorganischen Spezies Arsenit und Arsenat. Nur mit Hilfe einer speziellen chromatographischen Trennung war der Nachweis von AsF6- möglich; mit Standardmethoden blieb es unerkannt. (Text gekürzt)
Das Projekt "Die Rolle des Schwefels im primordialen biochemischen Arsen-Kreislauf - Mono Lake" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fakultät für Biologie, Chemie und Geowissenschaften - Umweltgeochemie durchgeführt. Leben wie wir es heute kennen, benötigt Phosphor. Arsen, das im Periodensystem unmittelbar darunter liegt, zeigt genügend chemische Ähnlichkeit, dass viele Organismen versuchen, Phosphat durch Arsenat zu ersetzen; für die meisten Organismen ist Arsen aber ein Gift. Kürzlich wurden allerdings vom Mono Lake - einem Arsen- und Sulfid-reichen, Sauerstoffarmen, hypersalinaren See Mikroorganismen isoliert, die Arsenat als Elektronenakzeptor verwenden können. Da der Mono Lake typische primordiale Bedingungen aufweist, stellt sich die Frage, ob As-Metabolisierer ein Indikator dafür sind, dass Arsen vor der Entwicklung der modernen Photosynthese eine wichtige biologische Rolle spielte. Wir vermuten, dass ein solcher früher Arsen-Kreislauf ganz entscheidend durch Schwefel beeinflusst worden wäre. Anstelle einer direkten Oxidation von Arsenit zu Arsenat, schlagen wir vor, dass Arsenit in sulfidischen Environments viel einfacher mit Polysulfiden reagieren kann, sich daraus Thioarsenate bilden, die sich wiederum zu Arsenat umwandeln. Die Identifikation von Reaktionswegen und -raten der Thioarsenatbildung und -umwandlung wird grundlegende Mechanismen des Energiegewinns primitiver Mikroorganismen aufdecken und wichtige Hinweise geben auf die Entwicklung frühen und möglicherweise extraterrestrischen Lebens. Derzeit werden gezielt zwei Organismen untersucht: der anaerobe chemoautotrophe Arsenat-Respirierer MLMS-1 und der fakultative, chemoautotrophe Arsenit-Oxidierer MLHE-1.
Origin | Count |
---|---|
Bund | 16 |
Land | 1 |
Type | Count |
---|---|
Chemische Verbindung | 5 |
Förderprogramm | 11 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 6 |
offen | 11 |
Language | Count |
---|---|
Deutsch | 15 |
Englisch | 3 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 11 |
Webseite | 6 |
Topic | Count |
---|---|
Boden | 8 |
Lebewesen & Lebensräume | 7 |
Luft | 3 |
Mensch & Umwelt | 17 |
Wasser | 6 |
Weitere | 12 |