API src

Found 7432 results.

Similar terms

s/artikel/Partikel/gi

Related terms

Umweltprobenbank Nr. 6915: Eisen / einjährige Triebe / Hochlagenplateau

Anzahl der Proben: 22 Gemessener Parameter: Natürlich vorkommendes Übergangsmetall Probenart: einjährige Triebe Einjährige Triebe von Nadelbäumen spiegeln aufgrund ihrer hohen physiologischen Aktivität die Schadstoffbelastung eines Jahres am besten wider. Dabei ist die Festlegung auf einen Jahrgang notwendig, da in Abhängigkeit der Stoff- und Altersklasse unterschiedliche Akkumulationsraten auftreten. Auch die Einbeziehung der Triebachsen ist wichtig, da sich an der Rinde der jungen Triebe die an Partikel gebundenen schwerflüchtigen Substanzen bevorzugt niederschlagen. Probenahmegebiet: Hochlagenplateau Vom Fichten-Hochlagenwald zur Sukzessionsfläche

Die atmosphärische Tagchemie von Schlüsselverbindungen beeinflußt von der atmosphärischen Nachtchemie (DARK KNIGHT).

Das Projekt "Die atmosphärische Tagchemie von Schlüsselverbindungen beeinflußt von der atmosphärischen Nachtchemie (DARK KNIGHT)." wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Flüchtige organische Verbindungen (VOC) werden in großen Mengen (1300 TgC pro Jahr) von biogenen und anthropogenen Quellen in die Atmosphäre emittiert. Die Oxidation solcher Verbindungen führt zur Bildung von semivolatilen Produkten, welche in die Partikelphase übergehen können und somit zur Bildung von sekundärem organischem Aerosol (SOA) beitragen. Die globale SOA Produktion anthropogenen Ursprungs beläuft sich auf 0,05 bis 9,7 Tg pro Jahr. Hingegen wird die biogene SOA Produktion mit bis zu 910 Tg pro Jahr beziffert, was einem Umsatz von 70% der emittierten biogenen VOCs entspricht. Ein solcher Umsatz ist unvereinbar mit den vergleichsweise niedrigen SOA Ausbeuten aus Aerosolkammerexperimenten. Die Ursache für diese Diskrepanz liegt vermutlich an zusätzlichen SOA Bildungswegen wie der Weiterreaktion von VOC Oxidationsprodukten, welche von den Umgebungsbedingungen wie dem Oxidationsmittel, der relativen Feuchte und der Art der vorhandenen Partikel abhängt. Somit sind zwar Tag- und Nachtchemie grundverschieden, allerdings auch eng miteinander verbunden, denn die Produkte der Nachtchemie werden durch die darauffolgende Tagchemie weiterprozessiert und umgekehrt. Dadurch wird das Partitionierungsverhalten der Produkte und somit die SOA Bildung stark beeinflusst. Daher soll im Rahmen des Projektes Dark Knight der Einfluss der Tagchemie auf die Nachtchemie und umgekehrt untersucht werden. Das Wissen über die Verschaltung von Tag- und Nachtchemie kann erheblich zum Verständnis über die an der SOA Bildung beteiligte Prozesse beitragen.

Emissionen aus dem Straßenverkehr und städtische Lufthygiene: Neue Möglichkeiten aus zeitlich hoch aufgelöster Analyse

Das Projekt "Emissionen aus dem Straßenverkehr und städtische Lufthygiene: Neue Möglichkeiten aus zeitlich hoch aufgelöster Analyse" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Westfälische Wilhelms-Universität Münster, Institut für Landschaftsökologie.In diesem Projekt sollen zeitlich hoch aufgelöste Spurengasmessungen und Messungen der Größenspektren der Aerosolpartikel an einem Verkehrsstandort zu einer deutlichen Weiterentwicklung unseres Verständnisses der Dynamik der Konzentrationen von Luftschadstoffen im städtischen Umfeld sowie der Emissionen aus dem Straßenverkehr beitragen. Neue, schnelle Techniken sollen das bereits gut entwickelte Grundlagenwissen zu Emissionsverhältnissen NO / NO2 / NOx einzelner Fahrzeuge und Fahrzeuggruppen entwickeln, den Einfluss auf die Ozonchemie und die Interaktion mit dem vorhandenen Ozon studieren, Emissionsverhältnisse NH3 / CO2 und NOx / CO2 unter realen Bedingungen quantifizieren, und vor allem die Emissionen der Aerosopartikel in einem weiten Größenspektrum (einige nm bis über 1 mym Durchmesser) detailliert quantifizieren. Dies bedeutet und ermöglicht eine neuartige Analyse der Emissionen von Partikeln im echten Straßenverkehr. Die vorgeschlagenen Konzepte und Messungen ergänzen sich mit anderen modernen Konzepten der Analyse von Luftverschmutzung und Emissionen wie z.B. multi-Sensoren-Anwendungen, Einsatz mobiler Plattformen, oder Eddy-Kovarianz. Hier wird Grundlagenforschung vorgeschlagen, die in Ergänzung mit anderen Anwendungen und Konzepten einschließlich Modellierung zu einer deutlichen Verbesserung unseres Verständnisses der städtischen Umwelt führen wird. Das Herzstück der experimentellen Forschung ist eine 18-monatige Messreihe am Straßenrand, die allerdings von zwei Intensivmesskampagnen (IOPs) um Kenntnisse zur räumlichen Representativität und zur chemischen Zusammensetzung der Partikel im Größenspektrum ergänzt werden.

Wertschöpfungskette Batteriezellproduktion

Das Projekt "Wertschöpfungskette Batteriezellproduktion" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: BASF SE.

Studie zur Strömungsinteraktion und Partikelabscheidung an Brennelementfuß und Mischungsgitter bei Betriebs- und Störfallbedingungen

Das Projekt "Studie zur Strömungsinteraktion und Partikelabscheidung an Brennelementfuß und Mischungsgitter bei Betriebs- und Störfallbedingungen" wird/wurde ausgeführt durch: Framatome GmbH.

Biogeochemie des Kohlenstoffs und Stickstoffs im Arabischen Meer - ein Beitrag zur Internationalen Indian Ocean Expedition 2, Vorhaben: Die winterlichen Partikelflüsse innerhalb der Sauerstoff-Minimumzone SMZ vor Pakistan

Das Projekt "Biogeochemie des Kohlenstoffs und Stickstoffs im Arabischen Meer - ein Beitrag zur Internationalen Indian Ocean Expedition 2, Vorhaben: Die winterlichen Partikelflüsse innerhalb der Sauerstoff-Minimumzone SMZ vor Pakistan" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Eberhard Karls Universität Tübingen, Fachbereich Geowissenschaften, Geo- und Umweltforschungszentrum (GUZ), Arbeitsgruppe Klimatologie und Biosphäre.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Variation der antarktischen Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Konzentrationen und Eigenschaften an NEumayer III im Vergleich zu deren Werten in der Arktis an der Forschungsstation Villum (VACCINE+)

Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Variation der antarktischen Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Konzentrationen und Eigenschaften an NEumayer III im Vergleich zu deren Werten in der Arktis an der Forschungsstation Villum (VACCINE+)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Das aktuelle Klima der Erde verändert sich schneller, als von den meisten wissenschaftlichen Prognosen vorhergesagt wurde. Dabei erwärmen sich die Polargebiete schnellsten von allen Regionen der Erde. Die Polargebiete haben auch starke globale Auswirkungen auf das Erdklima und beeinflussen daher das Leben und die Lebensgrundlagen auf der ganzen Welt. Trotz der großen Fortschritte der Polarforschung der letzten Jahre gibt es nach wie vor schlecht verstandene Prozesse; einer davon ist die Aerosol-Wolke-Klima-Wechselwirkung, die daher auch nicht zufriedenstellend modelliert werden können. Wolken und deren Wechselwirkungen im Klimasystem sind eine der schwierigsten Komponenten bei der Modellierung, insbesondere in den Polarregionen, da es dort besonders schwierig ist, qualitativ hochwertige Messungen zu erhalten. Die Verfügbarkeit hochwertiger Messungen ist daher von entscheidender Bedeutung, um die zugrunde liegenden Prozesse zu verstehen und in Modelle integrieren zu können. Im ersten Teil des hier vorgeschlagenen Projekts schlagen wir, d.h. TROPOS, vor, die bestehenden Aerosolmessungen an der Neumayer III-Station um in-situ Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Messungen zu erweitern für einen Zeitraum von fast zwei Jahren. Die erfassten Daten wie Anzahl der Konzentrationen, Hygroskopizität, INP-Gefrierspektren usw. werden mit meteorologischen Informationen (z.B. Rückwärtstrajektorien) und Informationen über die chemische Zusammensetzung der vorherrschenden Aerosolpartikel verknüpft, um Quellen für INP und CCN über den gesamten Jahreszyklus zu identifizieren. In einem optionalen dritten Jahr wollen wir die Ergebnisse der südlichen Hemisphäre mit den TROPOS-Langzeitmessungen des CCN und INP aus der Arktis (Villum Research Station) vergleichen, welche uns im Rahmen dieses Projekts von DFG-finanzierten TR 172, AC3, Projekt B04 zur Verfügung stehen werden. Ein Ergebnis des beantragten Projekts wird ein tieferes Verständnis dafür sein, welche Prozesse die CCN- und INP-Population in hohen Breiten dominieren. Die im Rahmen des vorliegenden Projekts gesammelten quantitativen Informationen über CCN und INP in hohen Breiten werden öffentlich zugänglich veröffentlicht, z.B. für die Evaluierung globaler Modelle und Satellitenretrievals.

Natürliche Nanopartikel und Kolloide in bewaldeten Europäischen Quellgebieten: Neue Erkenntnisse über raumzeitliche Dynamiken und potentielle Herkunft

Das Projekt "Natürliche Nanopartikel und Kolloide in bewaldeten Europäischen Quellgebieten: Neue Erkenntnisse über raumzeitliche Dynamiken und potentielle Herkunft" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Bereich Bodenwissenschaften, Allgemeine Bodenkunde und Bodenökologie.Natürliche Nanopartikel (NNP) und bodenstämmige Kolloide werden zunehmend als hoch relevante Transportform von Elementen in wässrigen Phasen von Ökosystemen anerkannt. Zur elementaren Zusammensetzung dieser Partikel und deren Größenspanne liegen erste Erkenntnisse vor, jedoch fehlen weiterhin wichtige fundamentale Informationen über deren zeitliche Dynamiken und deren Herkunft. Die Ziele dieses Projektes sind (i) die zeitlichen Dynamiken von NNP und Kolloiden aufzudecken, (ii) den Einfluss von signifikant erhöhten Abflussereignissen auf den Export von NNP und Kolloid-bedingtem Transport aufzuklären und (iii) die potentielle Herkunft von Bachwasser-NNP und Kolloiden zu erklären. Um eine Vorstellung über die Validität der Ergebnisse (iv) auf europäischer Skala und durch verschiedene Ökosysteme zu bekommen, werden die Analysen an Bachwasserproben von verschiedenen Dauerbeobachtungsflächen durch Europa durchgeführt. Diese Standorte, mit denen ich bereits erste eigene wissenschaftliche Kooperationen etablieren konnte, bieten Daten über die Böden, die Gewässerchemie und Stoffflüsse innerhalb des Ökosystems. Die Analytik wird mit Hilfe von Kombinationsverfahren der Feld Fluss Fraktionierung (FFF) durchgeführt. Für ausgewählte Proben wird größen- und elementspezifische Analytik von NNP und Kolloiden mit der Analyse von Lignin Phenolen, der natürlichen Häufigkeitsermittlung von 13C, Radiokarbondatierung und zusätzlicher d56Fe Analytik kombiniert. Durch die Kombination der Daten sollte es möglich sein das Vorkommen und die Variabilität von NNP und Kolloiden als vorherrschende Elementtransportform, sowie deren Herkunft aus verschiedenen Bodenhorizonten und die generelle Validität meiner Ergebnisse auf unterschiedliche Standorte in Europa besser verstehen zu können.

Hamburger Luftmessnetz (HaLm)

Das Hamburger Luftmessnetz (HaLm) * betreibt 15 Messstationen zur Überwachung der Luftqualität * unterscheidet zwischen Hintergrund-, Ozon- und Verkehrs-Messstationen * misst kontinuierlich gemäß EU-Richtlinien und dem Bundesimmissionsschutzgesetz Die Hintergrund-Messstationen dienen der allgemeinen Luftüberwachung. Sie erfassen die Schadstoffkomponenten Schwefeldioxid (SO2), Stickstoffmonoxid (NO), Stickstoffdioxid (NO2) und Schwebstaub (Feinstaub-PM10: Partikel kleiner als 10 Mikrometer und Feinstaub-PM2,5: Partikel kleiner als 2,5 Mikrometer). Eine Station misst außerdem Kohlenmonoxid (CO). Die Ozon-Messstationen ermitteln neben Ozon (O3) auch die NO2- und NO-Belastungen. An den Verkehrs-Messstationen werden die für den Autoverkehr typischen Schadstoffe NO, NO2 und Feinstaub-PM10 bzw. Feinstaub-PM2,5 sowie z.T. Benzol und CO gemessen. Die Messungen finden gemäß EU-Richtlinien und dem Bundes-Immissionsschutzgesetz kontinuierlich statt und erfüllen folgende Aufgaben/Zwecke: * Messungen nach den EU-Richtlinien für Feinstaub-PM10/PM2,5, Schwefeldioxid (SO2), Stickstoffdioxid (NO2), Benzol, Kohlenmonoxid (CO) und Ozon (O3), umgesetzt in der 39. Verordnung zum Bundes-Immissionsschutzgesetz (39. BImSchV) * Ozonwarn- und -Informationsdienst * Information der Öffentlichkeit * Bereitstellung von Daten für immissionsschutzrechtliche Genehmigungen * Aufstellung von Daten-Zeitreihen zur Ermittlung von Belastungstrends * allgemeine Überwachung der Luftqualität entsprechend der Vierten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz Nach automatischer und manueller Plausibilitätsprüfung werden die Messdaten in einer Datenbank vorgehalten und können in der Zentrale des Hamburger Luftmessnetzes mit verschiedenen Software-Tools ausgewertet werden. Aktuelle Stundenmittelwerte werden über Videotext (Norddeutscher Rundfunk NDR Seite 678, Hamburg1 Seite 155) und Internet (https://luft.hamburg.de) der Öffentlichkeit zur Verfügung gestellt. In dem Internetangebot finden sich darüber hinaus zusammengefasste und historische Daten, Charakterisierungen der Messstationen sowie weitere inhaltliche Erläuterungen.

Umweltbundesamt - Feinstaubemissionen der Partikelgröße PM10

Stäube sind feste Teilchen der Außenluft, die nicht sofort zu Boden sinken, sondern eine gewisse Zeit in der Atmosphäre verweilen. Nach ihrer Größe werden Staubpartikel in verschiedene Klassen eingeteilt. Als Feinstaub (PM10) bezeichnet man Partikel mit einem aerodynamischen Durchmesser von weniger als 10 Mikrometer (µm). Dargestellt wird der Durchschnitt aller Messwerte eines Sensors der letzten Stunde.

1 2 3 4 5742 743 744