Datenstrom B umfasst alle Informationen zu den Beurteilungsgebieten – wie Name, Gebietscode, Abgrenzung, Einwohnerzahl, Historie, Schadstoffe und Schutzziele, Fristverlängerung.
Datenstrom D umfasst alle Informationen zu den Beurteilungsmethoden.
Die 7 m langen Rhizotron-Röhren an zwei Standorten in Selhausen werden für quasi nicht-invasives Monitoring auf der Plot-Ebene von Wurzelwachstum und Bodenprozessen mittels Minirhizotron-Kameras, GPR Antennen und einem NMR Slim-line Tool genutzt. Die mathematische Beschreibung kleinskaliger Heterogenität, die durch die einzelnen Wurzeln hervorgerufen werden, wird auf der Plot-Ebene durch effektive Parameter und Beziehungen zwischen Bodenwasserverfügbarkeit, Wurzelwasseraufnahme und dem Zustand des Pflanzenbestandes landwirtschaftlicher Nutzpflanzen ersetzt. Diese werden im Landoberflächenmodell CLM implementiert.
Die Radiookkultations-(RO)-Technik verwendet auf niedrigfliegenden (Low Earth Orbiter, LEO) Satelliten installierte Empfänger, um GPS/GNSS-Signale zu empfangen und Bogenmessungen der Erdatmosphäre und Ionosphäre durchzuführen. Aufgrund des Erfolgs der FormoSat-3/COSMIC- (Constellation Observing System for Meteorology, Ionosphere and Climate, FS3/COSMIC) -Mission, bestehend aus sechs Mikro-LEO-Satelliten, hat das gemeinsame US- und taiwanesische RO-Team beschlossen, eine COSMIC-Folgemission (sog. FS7/COSMIC2) voranzubringen. Die GNSS-RO-Nutzlast mit Namen Tri-G GNSS Radio-occultation System (TGRS) wird mehrkanalige GPS-, GLONASS- und Galileo-Satellitensignale empfangen und in der Lage sein, mehr als 10.000 RO-Beobachtungen täglich zu verfolgen, nachdem sowohl schwache als auch starke Bahnneigungs-Konstellationen vollständig abgedeckt worden sind. Man geht davon aus, die dichteren RO-Szintillationsbeobachtungen zu nutzen, um die Struktur der Erdatmosphäre und -ionosphäre genau zu analysieren und zu modellieren.Zusätzlich könnte die spezielle Art von GNSS-Multipfadverzögerungen, die von der Erdoberfläche reflektiert werden, verwendet werden, um Erdoberflächenumgebungsdaten, wie Ozeanhöhen und Seegang, zu erfassen. Die Empfindlichkeit dieser Signalcharakteristika gegenüber Ausbreitungseffekten ist für verschiedene Arten der Umweltfernerkundung geeignet. Dies hat einen Bedarf deutlich gemacht, geeignete Empfänger zu entwerfen und zu entwickeln, die reflektierte und gestreute GPS/GNSS-Signale in Echtzeit erfassen und verarbeiten können, um die Speicherung riesiger Mengen an Rohdaten zu vermeiden. Wir schlagen auch vor, das feldprogrammierbare Gatterfeld (Field Programmable Gate Array, FPGA) auf die GPS/GNSS-Reflektometrieinstrumente anzuwenden, wobei eine hohe Synchronität und ein größtmöglicher Nutzen aus den verfügbaren Hardware-Ressourcen zu erzielen wäre. Mittels Simulink/Matlab kann das FPGA auch komplexe Delay-Doppler-Map- (DDM) -Daten in Echtzeit durch Korrelation der phasengleichen und Quadraturkomponenten der Basisbandsignale berechnen. Diese Studie wird neue Ziele und Ergebnisse der GNSS-Fernerkundung der Atmosphäre, Ionosphäre, und der Ozeane sowie neue Möglichkeiten für die zukünftige FS7/COSMIC2-Mission aufzeigen.Das Projekt wird am Institut für Geodäsie und Geoinformationstechnik TU Berlin in enger Kooperation mit Wissenschaftlern des GFZ, Potsdam und des GPS Science and Application Research Center (GPSARC) der NCU, Taiwan durchgeführt.Die Ziele des Projekts lassen sich wie folgt zusammenfassen:(1) Nutzung von GPS/GNSS-RO-Atmosphärendaten und Entwicklung hochentwickelter Algorithmen für die untere Troposphäre und klimatologische Untersuchungen,(2) Erfassung und Überwachung der sporadischen E(Es)-Schicht, Szintillationen und damit zusammenhängender Effekte einschließlich vertikaler Kopplungen und(3) Entwicklung eines Echtzeit-FPGA-basierten GPS/GNSS-Reflektometers für Anwendungen im Bereich von Meereshöhen- und Seegangsmessungen.
Datenstrom E1a umfasst gemessene (Link zu Datenstrom D) Einzelwerte von gasförmigen Schadstoffen (z. B. Ozon, Stickstoffdixoid, Schwefeldioxid, Kohlenmonoxid), von partikelförmigen Schadstoffen (z.B. Feinstaub, Ruß, Gesamtstaub) und Staubinhaltsstoffen (z.B. Schwermetalle, PAK in PM10, PM2.5, TSP) sowie der Gesamtdeposition (BULK), der nassen Deposition und meteorologische Messgrößen (z.B. Temperatur, Windgeschwindigkeit, Luftdruck), für die eine Datenbereitstellungspflicht besteht. Der Bericht umfasst zudem die Datenqualitätsziele (Messunsicherheit, Mindestzeiterfassung (time coverage) erfüllt ja/nein, Mindestdatenerfassung (data capture) erfüllt ja/nein) und Informationen zu Konzentrationswerten die natürlichen Quellen und der Ausbringung von Streusand und –salz zuzurechnen sind (Konzentrationswerte ohne etwaige Korrekturabzüge).
Datenstrom D umfasst alle Informationen zu den Beurteilungsmethoden.
Datenstrom B umfasst alle Informationen zu den Beurteilungsgebieten – wie Name, Gebietscode, Abgrenzung, Einwohnerzahl, Historie, Schadstoffe und Schutzziele, Fristverlängerung.
Datenstrom G bildet die formale gebietsbezogene Beurteilung der Luftqualität in Bezug auf Grenz- und Zielwerte ab, ggf. unter Berücksichtigung gewährter Fristverlängerung und bereinigt um Beiträge aus natürlichen Quellen und der Ausbringung von Streusand und –salz im Winterdienst.
Datenstrom D umfasst alle Informationen zu den Beurteilungsmethoden.
Datenstrom D umfasst alle Informationen zu den Beurteilungsmethoden.
| Origin | Count |
|---|---|
| Bund | 133 |
| Wissenschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2 |
| Förderprogramm | 50 |
| Hochwertiger Datensatz | 40 |
| Text | 2 |
| unbekannt | 41 |
| License | Count |
|---|---|
| geschlossen | 5 |
| offen | 129 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 120 |
| Englisch | 42 |
| Resource type | Count |
|---|---|
| Archiv | 66 |
| Datei | 3 |
| Dokument | 2 |
| Keine | 33 |
| Webdienst | 10 |
| Webseite | 22 |
| Topic | Count |
|---|---|
| Boden | 124 |
| Lebewesen und Lebensräume | 133 |
| Luft | 120 |
| Mensch und Umwelt | 135 |
| Wasser | 112 |
| Weitere | 134 |