Das Projekt "Statistische Mechanik des Wetters und des Klimas: Instabilitaeten, Vorhersagbarkeit und Antwort - MERCI" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Erdsystemwissenschaften, Meteorologisches Institut durchgeführt. Das Klima ist ein angetriebenes, dissipatives Nichtgleichgewichtssystem, wobei unsere Fähigkeiten die beteiligten Prozesse zu verstehen und simulieren begrenzt sind. Meteorologie und Klimaforschung verfügen noch nicht über eine Theorie zur Beschreibung von Instabilitäten, Gleichgewichtsrelaxation, Vorhersagbarkeit, Variabilität, und der Antwort auf Störungen. Trotz großer Fortschritte stoßen Klima- und Wettervorhersagemodelle nach wie vor auf Barrieren aufgrund der komplexen Randbedingungen und der Multiskaleneffekte. Diese Effekte erfordern die Parametrisierung der nicht aufgelösten Prozesse mit der Folge großer systematischer Fehler. Wir nutzen drei erfolgreiche Ansätze aus der statistischen Mechanik und der Theorie dynamischer Systeme: Covariante Lyapunov Vektoren (CLV), instabile periodische Orbits (UPO) und die Response-Theorie (RT). Dies wird uns erlauben, relevante Probleme der geophysikalischen Strömungsdynamik (GFD) im turbulenten Bereich anzugehen. Wir werden diese Ideen auf komplexere numerische Modelle als frühere Studien ausdehnen.1) Instabilitäten: Wir werden Instabilitäten in turbulenten geophysikalischen Strömungen durch CLVs beschreiben. Im Gegensatz zu klassischen Lyapunov-Vektoren bieten CLVs eine kovariante Aufspaltung der Strömung und physikalisch interpretierbare Muster und erlauben damit eine neue Interpretation von Instabilitäten. Dies wird es uns ermöglichen, eine Verbindung zwischen der Energetik und der dynamischen Eigenschaften herzustellen und damit die mesoskopischen mit den makroskopischen Eigenschaften der Strömung zu verknüpfen.2) Vorhersagbarkeit: Wir werden CLVs und UPOs nutzen, um die Vorhersagbarkeit zu analysieren und Zustände hoher und niedriger Vorhersagbarkeit besser zu verstehen. Wir werden untersuchen auf welche Weise Schwankungen der Lyapunov Exponenten (LE) mit bestimmten Eigenschaften der entsprechenden CLVs zusammenhängen. Wir werden den sogenannten Return-of-Skill in Vorhersagen von Strömungen in einen Zusammenhang mit vorübergehenden Abweichungen in der Summe der positive LEs der Strömung bringen und damit die in der Wettervorhersage beobachteten Schwankungen der Vorhersagbarkeit erklären. Wir werden die Hypothese prüfen inwieweit UPOs die niederfrequente atmosphärische Variabilität erklären können.3) Antworttheorie: Auf der Basis der RT werden wir berechnen wie eine Strömung auf Störungen reagiert, indem nur die Gleichgewichtseigenschaften verwendet werden. Wir werden aus kleinen Ensembles von gestörten Simulationen den Responseoperator empirisch für Klimamodelle ableiten. Dies wird uns eine neue Methode zur Projektion auf verschiedene räumliche und zeitliche Skalen liefern. Wir werden die Antwort von baroklinen Strömungen auf Störungen (z.B. Erwärmung und CO2-Konzentration) analysieren. Wir werden die CLVs nutzen, um die Responseoperatoren in die stabilen, instabilen und neutralen Richtungen zu zerlegen und die Hypothese prüfen inwieweit UPOs mit Resonanzen verbunden sind.
Das Projekt "Untersuchungen zum Einfluss von geomagnetischer Aktivität auf Zusammensetzung und Zirkulation der Thermosphäre und deren Kopplung in die mittlere und obere Atmosphäre" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung - Atmosphärische Spurenstoffe und Fernerkundung durchgeführt. Neuere Forschungsergebnisse legen nahe, dass Ozon in der mittleren Atmosphäre (10 bis 90 km) von der oberen Atmosphäre beeinflusst werden kann, durch Absinken von NOx (N, NO, NO2) aus Quellregionen in der unteren Thermosphäre (90 bis 120 km) im polaren Winter. Da Ozon eine der wesentlichen strahlungsaktiven Substanzen in der mittleren Atmosphäre ist, können Änderungen im Ozonbudget Temperaturen und Zirkulation der Atmosphäre bis zum Erdboden herunter beeinflussen. Da die Stärke dieser thermosphärischen Einträge mit der geomagnetischen Aktivität variiert, stellen diese winterlichen NOx-Zunahmen einen möglichen Mechanismus der Sonne-Klimakopplung dar. Derzeit sind gängige Chemie-Klimamodelle aber nicht in der Lage, die Quellregion des NOx in der unteren Thermosphäre und den Transport in die mittlere Atmosphäre im polaren Winter realistisch zu simulieren. Um diese Kopplung von der oberen Atmosphäre in die mittlere und untere Atmosphäre in den Modellen realistisch darzustellen, ist eine gute Darstellung der primären Prozesse notwendig: Änderungen der chemischen Zusammensetzung durch präzipitierende Elektronen aus der Aurora, Joule-Heizen, und das daraus folgende Kühlen im infraroten Spektralbereich sowie die Anregung von Schwerewellen. Da in der unteren Thermosphäre angeregte Schwerewellen sich nach oben ausbreiten, kann der letztgenannte Prozess auch einen Einfluss auf die Umgebung von Satelliten in niedrigen Orbits haben. In dem hier vorgeschlagenen Projekt werden wir das gekoppelte Chemie-Klimamodell xEMAC verwenden, welches in seiner derzeitigen Konfiguration bis in die untere Thermosphäre (170 km) reicht, um den Einfluss der verschiedenen mit geomagnetischer Aktivität verbundenen Prozesse auf den Zustand der unteren Thermosphäre, und deren Darstellung in Chemie-Klimamodellen, zu untersuchen. Dazu wollen wir in Zusammenarbeit mit unserem Kooperationspartner an der Jacobs-Universität Bremen die zeitliche und räumliche Variation von Joule-Heizen und Teilchenniederschlag im Modell durch Beobachtungen des Swarm-Instrumentes vorgeben. Sowohl geomagnetisch ruhige als auch sehr aktive Zeiten sollen untersucht werden. Das Modell wird im Rahmen dieses Projektes weiter nach oben erweitert werden, um voraussichtlich in der zweiten Phase des SPPs auch den Einfluss auf die Umgebung von Satelliten zu untersuchen. Der modellierte Einfluss von geomagnetischer Aktivität soll durch adäquate Beobachtungen validiert werden, und Modellergebnisse werden analysiert, um den Einfluss von Joule-Heizen und Teilchenniederschlag auf die chemische Zusammensetzung, Temperatur, und Zirkulation der unteren Thermosphäre sowie deren Kopplung einerseits in die untere und mittlere Atmosphäre, andererseits in die obere Atmosphäre, zu untersuchen. Ziel dieses Projektes ist es, das Verständnis von Sonne-Klimakopplung und die Darstellung der beteiligten Prozesse in Chemie-Klimamodellen zu verbessern, sowie geomagnetische Einflüsse auf die Umgebung von Satelliten zu untersuchen.
Das Projekt "Tropische Bodenkohlenstoffdynamik im Bezug zur Variabilität von Bodengeochemie und Landnutzung entlang erosiver Störungsgradienten (TropSOC)" wird vom Umweltbundesamt gefördert und von Universität Augsburg, Institut für Geographie durchgeführt. Die Reaktion von Böden auf erosionsbedingte Störungen ist eine der großen Unsicherheiten bei der Vorhersage von zukünftigen Treibhausgasflüssen von Böden zur Atmosphäre in Erdsystemmodellen. Das tropische Afrika ist dabei ein wichtiger globaler Hotspot von Klima- und Landnutzungswandel. Schnell wachsende Bevölkerung, Abholzung der Primärwälder zur Schaffung von Ackerflächen sowie die damit einhergehende Bodendegradation stellen die Region vor große Herausforderungen. Es wird erwartet, dass dort noch in diesem Jahrhundert bedeutende Änderungen sowohl in Bezug auf biogeochemische Kreisläufe in Böden, als auch den Fluss von Kohlenstoff (C) zwischen Boden, Vegetation und der Atmosphäre auftreten werden. Da sich der Großteil unseres Prozessverständnisses des Kohlenstoffzyklus aus den Klimazonen der mittleren Breiten ableitet, ist unklar wie sich die Kohlenstoffdynamik in den Tropen entwickeln wird. Es ist wichtig, diese Wissenslücke zu füllen, da tropische Ökosysteme Dienstleistungen von globaler Bedeutung übernehmen, wie zum Beispiel der Kohlenstoffspeicherung in Pflanzen und Böden, Biomasseproduktion und letztlich Lebensmittelversorgung der Region. Ziel des vorgeschlagenen Projektes TROPSOC ist es daher ein mechanistisches Verständnis der Kohlenstoffsequestrierung und -mineralisierung in Böden des tropischen Afrikas zu entwickeln. Die Studienflächen im östlichen Bereich des Kongo-Einzugsgebietes bieten eine einzigartige Kombination aus geologisch unterschiedlichem Ausgangsmaterial für die Bodenbildung und verschiedenen Ebenen der Störung durch den Menschen, welche unter tropisch-feuchtem Klima stattfindet. TROPSOC wird wesentlich dazu beitragen, die folgenden Fragen zu beantworten: 1. Wie werden sich Kohlenstoffflüsse und -speicherung in tropischen Systemen zwischen Böden, Pflanzen und der Atmosphäre entwickeln und unterscheiden mit Bezug auf die Steuerungsfaktoren: Geologie, Boden, Störungen durch den Menschen und Topographie? 2. Wie beeinflusst die Biogeochemie von tropischen Böden die Schwere der erosiven Störung des tropischen Kohlenstoffzyklus? 3. Wie kann man die Kontrollmechanismen der Bodenkohlenstoffdynamik in einer räumlich expliziten Weise modellieren? TROPSOC wird maßgeblich zum besseren Verständnis der Faktoren beitragen, welche die räumliche Verteilung und zeitliche Dynamik von organischen Kohlenstoff in tropischen Böden steuern. TROPSOC wird Daten und Modelle erzeugen welche die Lücke zwischen lokalem Prozessverständnis und großräumlicher Modellierung des Kohlenstoffzyklus in tropischen Böden schließt. Dies wird letztlich dazu beitragen, die Unsicherheit im Zusammenhang mit terrestrischen Kohlenstoffflüssen und der Reaktion von Böden auf Störungen zu reduzieren, was eines der größten Probleme in aktuellen Erdsystemmodellen und bei der Beurteilung von Ökosystemdienstleistungen darstellt.
Das Projekt "Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center" wird vom Umweltbundesamt gefördert und von Ludwig-Maximilians-Universität München, Meteorologisches Institut durchgeführt. Die Fähigkeit, das Wetter bis über eine Woche hinaus vorhersagen zu können, erspart unserer Gesellschaft jährlich Kosten in Milliardenhöhe und trägt entscheidend zum Schutz von Leben und Eigentum bei. Die zunehmende Leistungsfähigkeit unserer Computersysteme und neuartige Beobachtungen haben über die Jahre hinweg zu einer kontinuierlichen Verbesserung der Wettervorhersagequalität geführt. Dennoch kommt es immer noch gelegentlich zu erheblichen Fehlvorhersagen. Dies ist nicht allein auf Defizite in den Vorhersagemethoden zurückzuführen - in einem chaotischen System wie der Atmosphäre gibt es Wettersituationen, die per se schwer vorherzusagen sind. Die gegenwärtige Herausforderung ist daher die Vorhersagbarkeit und insbesondere deren Grenzen, abhängig von der jeweiligen Wettersituation, zu identifizieren um eine bestmögliche Vorhersage bereitstellen zu können. Der TRR 165 wird sich dieser Herausforderung stellen und hat sich zum Ziel gesetzt, durch die Beantwortung der zugrunde liegenden wissenschaftlichen Fragestellungen einer neuen Generation von Wettervorhersagesystemen den Weg zu ebnen. Die wichtigsten Ursachen für verbleibende Unsicherheiten in der derzeitigen numerischen Wettervorhersage sind: A das schnelle Wachstum von Fehlern, die durch nicht oder unzureichend dargestellte physikalische Prozesse wie Konvektion oder Mischung in der Grenzschicht entstehen und letztlich zu Veränderungen der Wellen auf synoptischer Skala führen können, B unser begrenztes Verständnis der physikalischen Prozesse in Wolken und C der relative Einfluss lokaler Faktoren und synoptisch-skaliger Wellen auf das Wetter und dessen Vorhersagbarkeit. Im Rahmen von 'Wellen, Wolken, Wetter' werden diese drei Fragestellungen gemeinsam von Experten der Disziplinen Atmosphärendynamik, Wolkenphysik, Statistik, Inverse Methoden und Visualisierung bearbeitet. Dabei wird TRR 165 eine Vielzahl von Methoden anwenden und neu entwickeln, wie etwa numerische Modelle mit detaillierter Darstellung von Wolkenprozessen und Aerosolen, aber auch Ensemblevorhersagen mit hochentwickelten statistischen Nachbearbeitungsverfahren zur mathematischen Beschreibung der Unsicherheit nutzen. Die zusätzliche Entwicklung neuer, interaktiver Visualisierungsmethoden erlaubt eine rasche und intuitive Erfassung komplexer Informationen, die in Ensemblevorhersagen sowohl zu den Ursachen als auch zur Entwicklung der Unsicherheit meteorologischer Strukturen enthalten sind. Die Gesamtziele von 'Wellen, Wolken, Wetter' sind nur durch die Zusammenführung der Expertise von drei renommierten Forschungsstandorten zu erreichen: München mit der LMU, der TUM, dem DLR; Mainz mit der JGU; und Karlsruhe mit dem KIT. Zudem wird im Rahmen dieses Konsortiums ein innovatives Programm geschaffen, das die Entwicklung von Nachwuchswissenschaftlern im Rahmen eines etablierten Netzwerks erfahrener Wissenschaftler fördern und die Chancengleichheit auf allen Karriereniveaus in den beteiligten Disziplinen verbessern soll.
Das Projekt "ASIA-FLOODS Extreme Änderungen des Meeresspiegels an der Süd-Ost-Asiatischen Küste: Vergangenheit, Gegenwart und Zukunft" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Institut für Küstenforschung durchgeführt. Extreme kurzfristige Meeresspiegeländerungen können schwerwiegendere Auswirkungen auf die Gesellschaft und Ökosysteme haben, als ein langsam ansteigender mittlerer Meeresspiegel. Wenn sich die Anzahl von Extremereignissen unter dem Einfluss anthropogener Klimaänderungen verändert, kann das grundlegende Konsequenzen auf die Abschätzung klimawandelbedingter Auswirkungen haben, und in der Folge auf geplante Anpassungsmaßnahmen. Südostasien ist eine der bevölkerungsreichsten Regionen der Welt, welche den Auswirkungen von Taifunen und extratropischen Zyklonen unterliegt. Gegenwärtig ist noch unklar, inwiefern externe Klimaantriebe die Häufigkeit und Intensität von extremen Ereignissen wie Sturmfluten und starken und/oder langanhaltenden Niederschlagsereignissen beeinflussen, und welche Rolle dabei die interne Variabilität der Klimaantriebe spielt. Im Projekt Asia-Floods werden atmosphärische Wettermuster identifiziert werden, welche zu küstennahen Überflutungen durch Sturmfluten und/oder durch extreme kontinentale Niederschläge in der Region Südostasien führen können. Dazu wird eine Reihe von vorhandenen globalen und regionalen Klimasimulationen unterschiedlicher räumlicher Auflösung untersucht werden, welche sowohl die letzten Dekaden als auch Simulationen über das letzte Jahrtausend und Zukunftsszenarien abdecken. Auf Basis dieser Simulationen wird ein statistischer Downscaling Ansatz angewendet werden, in welchem die großskaligen atmosphärischen Klimafaktoren in einen statistischen Zusammenhang zu (beobachteten) lokalen Klimafaktoren gebracht werden. Dazu werden Beobachtungsdatensätze von extremen Wasserständen und Niederschlagsereignissen verwendet werden. Nach der Kalibrierung dieser statistischen Modelle anhand gegitterter Beobachtungsdaten und meteorologischer Reanalysen, können diese auf vergangene und zukünftige globale und regionale Klimasimulationen angewendet werden, um Änderungen in der Anzahl von Extremereignissen abschätzen zu können. Die erzielten Ergebnisse auf Basis der Klimasimulationen der vergangenen Jahrhunderte werden u.a. mit anderen Projekten innerhalb dieses SPPs abgeglichen, um die Häufigkeit von Überflutungen in Proxydaten zu untersuchen. Im Falle der Szenario-Simulationen werden die Ergebnisse u.a. verwendet, um den Anstieg der durch küstennahe Überflutungen verursachten ökonomischen Kosten abzuschätzen.
Das Projekt "Nicht-zonale Strukturen der Zirkulation der Mesosphäre und unteren Thermosphäre mittlerer Breiten (NOSTHEM)" wird vom Umweltbundesamt gefördert und von Universität Leipzig, Institut für Meteorologie durchgeführt. In NOSTHEM sollen zonale Unterschiede des mittleren Windes, Gezeitenparameter, planetarer Wellen und Schwerewellen in der Mesosphäre und unteren Thermosphäre untersucht und erklärt werden. Ihr Einfluss auf die Repräsentativität einzelner Messungen für ein zonales Mittel von mittlerem Wind und Wellen wird bestimmt werden. Dies soll eine quantitative Einschätzung der Unsicherheiten von mittlerer Klimatologie, Langzeittrends und Maßen für die Variabilität auf der Basis einzelner Messungen ermöglichen. Der Beitrag nicht-zonaler Strukturen auf die mittlere Zirkulation und ihre Variabilität wird bestimmt. Hemisphärische Analysen von Wellen und Zirkulation in der unteren und mittleren Atmosphäre werden verwendet, um deren Rolle bei der Bildung longitudinaler Unterschiede zu klären. Dies wird auch die Frage beantworten, ob die schon seit langem beobachteten Unterschiede des mesosphärischen Windes über Mittel- und Osteuropa signifikant sind und wenn ja, welche Prozesse zu deren Auftreten beitragen.In NOSTHEM werden Beobachtungen zweier praktisch identischer VHF-Meteorradare auf ähnlicher geographischer Breite, aber mit 36° Längenunterschied herangezogen. Daher kann daraus der Beitrag nicht-zonaler Strukturen zur lokalen Klimatologie und Variabilität ermittelt werden. Um ein umfassendes hemisphärisches Bild zu erhalten, werden die lokalen Radarmessungen durch Satellitenbeobachtungen und Reanalysedaten ergänzt, sowie numerische Simulationen mit einem Zirkulationsmodell der mittleren Atmosphäre durchgeführt.Die Hauptziele von NOSTHEM sind (1) eine quantitative Darstellung von Ähnlichkeiten und Unterschieden der mesosphärischen/thermosphärischen Zirkulation an zwei Längengraden, (2) eine Erweiterung dieser Analyse durch hemisphärische Daten und (3) eine Quantifizierung der Rolle von Wellen bei der Ausprägung der Zirkulation an einzelnen Orten. Als Endziel werden nicht-zonale Strukturen und ihre Gründe und die zu ihnen führenden Prozesse geklärt, und auch Hinweise für die Interpretation von Klimatologie und Variabilität an einzelnen Orten in Bezug auf die gesamthemisphärische Dynamik gegeben.NOSTHEM wird als Kooperation des Instituts für Meteorologie, Universität Leipzig und des radiophysikalischen Departments, Universität Kasan gemeinsam durchgeführt.
Das Projekt "Lokale stochastische Subgitterskalenmodellierung in der effizienten Simulation der geophysikalischen Strömungsdynamik" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Es gibt konzeptionelle Gründe, Interesse an effizienten Atmosphärenmodellen zu haben, weil diese tiefere Einblicke in der Atmosphärendynamik erlauben, z.B. in Hinsicht auf Klimavariabilität. Solche Modelle sind aber auch ein nützliches Werkzeug bei Untersuchungen der Klimasensitivität oder des Paläoklimas, wo sehr viele oder sehr lange Integrationen benötigt werden und somit die Recheneffizienz eine wichtige Rolle spielt. Besonders bei diesen Anwendungen muss darauf Wert gelegt werden, dass die unvermeidlichen Subgitterskalenparametrisierungen möglichst viel auf ersten Prinzipien basieren. Die stochastische Modenreduktion (SMR) bietet hier eine Strategie, bei der ein großer Teil der Parametrisierung auf Papier hergeleitet wird, wenn bestimmte Terme, die Wechselwirkungen zwischen nichtaufgelösten Moden beschreiben, durch einen einfachen stochastischen Prozess modelliert werden können. In früheren Anwendungen der SMR wurden die reduzierten Atmosphärenmodelle immer im Spektralraum formuliert. Somit koppelt die dazugehörige globale subgitterskalige Parametrisierung alle aufgelösten Moden miteinander. Letztes begrenzt die Anwendbarkeit der Methode auf niedrigdimensionale Systeme. Um dieses Problem zu umgehen, ist unlängst eine Implementierung der SMR für gitterbasierte Raumdiskretisierungen entwickelt worden, die in einer lokalen Parametrisierung resultiert. Diese Strategie wurde bis jetzt nur im Rahmen der Burgersgleichung getestet. Das vorgeschlagene Projekt soll signifikant dazu beitragen, die lokale SMR auf realistische Modelle der Atmosphärendynamik anzuwenden. Dabei sollen subgitterskalige Parametrisierungen für die barotrope Vorticitygleichung und für die Flachwassergleichungen auf der f-Ebene konstruiert werden. Beide Modelle beinhalten wesentliche Eigenschaften, die berücksichtigt werden müssen, wenn man die lokale SMR auf die allgemeinen Gleichungen für die Beschreibung der Atmosphärendynamik anwenden will. Die neuen subgitterskaligen Parametrisierungen sollen folgende Kriterien erfüllen: i) sie sollen systematisch aus den Modellgleichungen unter einer relativ kleinen Anzahl von Grundannahmen hergeleitet werden ii) sie sollen so konsistent wie möglich mit den Erhaltungseigenschaften der Gleichungen sein und iii) sie sollen eine minimale (falls möglich gar keine) Anpassung an Daten der aufgelösten Skalen verwenden. In der Klimamodellierung existiert ein großer Bedarf an physikalisch basierten und auflösungsunabhängig formulierten stochastischen Parametrisierungen. Die Entwicklung von subgitterskaligen Parametrisierungen mittels der SMR, wie in diesem Projekt vorgeschlagen, wird zu solchen Verfahren beitragen. Die Turbulenzparametrisierung in grob auflösenden Simulationen ist ein anderes Feld, das von einer solchen Entwicklung profitieren kann.
Das Projekt "Hydrogeodäsie - CRNS Tiefenskalierung durch Kombination nichtinvasiver Messverfahren mit unterschiedlicher Integrationstiefe" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Die Dynamik der Wasserspeicherung im Untergrund hat Einfluss auf Abflussbildung, Grundwasserneubildung, Wasserverfügbarkeit sowie Wasser- und Energieflüsse zwischen Boden und Atmosphäre. Im Gegensatz zu punktskaligen Messungen des Wassergehalts in der ungesättigten Zone mit Feuchtesensoren bietet Cosmic Ray Neutron Sensing (CRNS) den Vorteil einer integrativen Messung auf der Feldskala. CRNS-Messungen sind jedoch auf wenige Dezimeter im Oberboden beschränkt, sodass die oben genannten Prozesse nicht ausreichend erfasst werden können. Daher ist es wichtig, die Entwicklung von Verfahren zur Skalierung der CRNS Beobachtungen in größere Tiefen voranzutreiben. Das Ziel des Moduls Hydrogeodäsie in der Forschergruppe Cosmic Sense ist die Extrapolation der CRNS Bodenfeuchte in die Wurzelzone mit Hilfe verschiedener Verfahren der Tiefenskalierung. Wir kombinieren hierzu CRNS mit zwei anderen nichtinvasiven Beobachtungsverfahren, die über einen ähnlichen horizontalen Messbereich (etwa 100 m) aber andere Integrationstiefen verfügen: GNSS Reflektometrie mit einer Integrationstiefe von wenigen Zentimetern und terrestrische Gravimetrie, die über die gesamte vadose Zone integriert. Die Untersuchungsgebiete werden dazu mit allen drei Techniken (CNRS, GNSS-R und Gravimetrie) instrumentiert. Über die Kombination dieser Beobachtungen erstellen wir einen einzigartigen Datensatz: tiefenaufgelöste Bodenfeuchte auf der Feldskala. Der zeitvariable funktionelle Zusammenhang zwischen den Beobachtungen in unterschiedlichen Tiefen wird analysiert und geeignete Ansätze zur Tiefenskalierung der Bodenfeuchte werden getestet und entwickelt. Wir erwarten somit auch einen wichtigen Beitrag für die Extrapolation fernerkundlicher Daten der Bodenfeuchte in größere Tiefen leisten zu können. Mit unserem umfassenden Beobachtungsansatz zielen wir auf ein besseres Verständnis von Wasserflüssen zwischen Grundwasser, Boden und Atmosphäre ab. Des Weiteren trägt das Projekt zu einer Weiterentwicklung verschiedener neuartiger nichtinvasiver Bodenfeuchte-Messverfahren bei. Das Modul Hydrogeodäsie trägt zu den drei übergeordneten Zielen der Forschergruppe wie folgt bei: (1) Herausforderungen der CRNS Messtechnik, hier die variable Integrationstiefe, werden über komplementäre, tiefenaufgelöste Beobachtungsdaten in Zusammenarbeit mit dem Modul Neutronensimulation weiterentwickelt, (2) repräsentative Bodenfeuchtedaten für die Wurzelzone werden über die neu erstellten Verfahren zur Tiefenskalierung und mit hydrologischen Modellen in Kooperation mit den Modulen Grundwasserneubildung und Hydrologische Modellierung ermittelt, (3) Dynamiken einzelner Wasserspeicher werden mit über CRNS hinausgehenden Beobachtungsdaten erfasst: einerseits die oberflächliche Bodenfeuchte und Schneehöhe mit GNSS-R in Kooperation mit den Modulen Fernerkundung und Grundwasserneubildung und andererseits die Variationen der Gesamtwasserspeicherung mit Gravimetrie.
Das Projekt "Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.
Das Projekt "Dreidimensionale Mehrskalendynamik von Schwerewellen" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Gegenstand dieses Projekts 'Multi-Scale Dynamics of Gravity Waves (MS-GWaves)' ist die asymptotische Mehrskalendynamik der Ausbreitung von Schwerewellen (SW), aufbauend auf einer nichtlinearen WKB-Theorie der Antragsteller und deren methodologischer Weiterentwicklung hin zu einer praktischen Implementierung. Die Theorie soll erweitert werden durch die zusätzliche Berücksichtigung der Wechselwirkung zwischen großskaligen aufgelösten und kleinskaligen parametrisierten Schwerewellen und durch eine Neubetrachtung der Wechselwirkung von Schwerewellen und geostrophischen Moden untereinander und mit der synoptisch-skaligen Strömung. Dies wird ergänzt durch eine verbesserte Behandlung der nichtlinearen SW-Dissipation, und, in Wechselwirkung mit dem Teilprojekt GW-ICE, durch eine skalenabhängige Modellierung der Wechselwirkung von SW und Tropopause. Ergebnis wird eine allgemeine Theorie und numerische Methode für die Vorhersage der Ausbreitung von SW, ihrer Wechselwirkung mit der mittleren Strömung, und ihrer Dissipation sein. Die Ergebnisse werden mittels Large-Eddy-Simulationen (LES) validiert. Die Entwicklungen in diesem Teilprojekt werden direkt Eingang in ein prognostisches SW-Modell (MS-GWaM) finden, das in das SW-erlaubende globale Modell UA-ICON eingebaut wird, welches innerhalb des FOR-Teilprojekts GWING entwickelt wird. Dabei wird an Quellenbeschreibungen angekoppelt, die von den FOR-Projekten SV und SI bereitgestellt werden. In UA-ICON/MS-GWaM wirken die SW auf die großskalige Strömung, aber die Möglichkeit der Nutzung des SW-Modells als diagnostisches Werkzeug wird ebenfalls angestrebt.
Origin | Count |
---|---|
Bund | 48 |
Type | Count |
---|---|
Förderprogramm | 48 |
License | Count |
---|---|
offen | 48 |
Language | Count |
---|---|
Deutsch | 33 |
Englisch | 35 |
Resource type | Count |
---|---|
Keine | 32 |
Webseite | 16 |
Topic | Count |
---|---|
Boden | 44 |
Lebewesen & Lebensräume | 43 |
Luft | 47 |
Mensch & Umwelt | 48 |
Wasser | 43 |
Weitere | 48 |