API src

Found 161 results.

Related terms

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Überwindung des Zeitskalenproblems von Klima- und Vegetationseinflüssen auf die Denudation: Ein Lösungsansatz mittels gekoppelter Modellierung

Dieser Antrag stellt die Weiterführung unserer Arbeiten aus EarthShape Phase 1 dar. In den vorangegangenen Arbeiten wurde der Einfluss von Klima- und Vegetationsveränderungen seit dem letzten glazialen Maximum bis heute auf die Topographie und Erosionsraten in den EarthShape Untersuchungsgebieten untersucht. Unsere Ergebnisse zeigen signifikante Änderungen von Vegetation und Erosionsraten während der letzten 21000 Jahre, sowie nicht-lineare Effekte und, von Vegetationsveränderungen abhängige, Schwellenwerte von Erosionsraten. Diese Ergebnisse, sowie die großskaligen Veränderungen von Umweltbedingungen und Tektonik des Känozoikums, motivieren uns in Phase 2, über die größeren Zeitskalen (Millionen Jahre) des Känozoikums zu integrieren um so die Einflüsse der ausgeprägten Klimaänderungen auf die Vegetation und davon bedingten Verwitterungs- und Erosionsraten in der Küstenkordillere Chiles zu untersuchen. Unsere übergreifende Hypothese ist: Ein starkes Abnehmen der CO2-Konzentration der Atmosphäre und ein Klimaentwicklung hin zu kälteren und trockeneren Bedingungen seit dem Übergang vom Eozän zum Oligozän haben (1) zu einer substantiellen Verringerung der Planzenproduktivität und Vegetationsbedeckung geführt. Diese Vegetationsveränderungen haben wiederum (2) zu deutlich veränderten Erosions- und Pflanzen-bedingten Verwitterungsraten geführt. Infolgedessen könnte die rezente Topographie substantiell durch die Vegetationsdynamik der Vergangenheit bedingt sein. Unsere Untersuchung und Bewertung dieser Hypothese baut auf unseren eigenen Arbeiten und den technischen Fortschritten von Partnern aus Phase 1 auf. Wir werden ein gekoppeltes Modellsystem, bestehend aus dem dynamisches Vegetationsmodell LPJ-GUESS und dem Oberflächenprozessmodell LandLab, einsetzen, und es mit Simulationen von Paläo-Klimaänderungen (ECHAM5) der vergangenen 34 Millionen Jahre antreiben. Integraler Bestandteil und neu in unserem Ansatz ist die Verknüpfung des Vegetations- und Oberflächenprozessmodells, um Änderungen der biotischen (pflanzen-bedingten) und abiotischen Verwitterung zu schätzen. Hierzu werden wir: a) quantifizieren, wie dynamische Vegetationsveränderungen die Denudationsraten, Topographie und Tiefenverwitterung beeinflussen; b) bewerten inwiefern von Pflanzen beeinflusste Erosion und Verwitterung von den herrschenden Niederschlagsbedingungen, der Temperatur, und von CO2 Konzentrationen abhängen, und c) pedogene, geochemische, geologische und ökologische Daten aus Phase 1, sowie neue Ergebnisse aus Phase 2 aus anderen Projekten in unser Modellierungskonzept integrieren.

Atmosphärische Treibhausgas-Konzentrationen

<p>Bedingt durch seine hohe atmosphärische Konzentration ist Kohlendioxid nach Wasserdampf das wichtigste Klimagas. Die globale Konzentration von Kohlendioxid ist seit Beginn der Industrialisierung um gut 50 % gestiegen. Demgegenüber war die Kohlendioxid-Konzentration in den vorangegangenen 10.000 Jahren annähernd konstant. Konzentrationen weiterer Treibhausgase tragen ebenfalls zum Klimawandel bei.</p><p>Kohlendioxid </p><p>Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle und Erdöl) und durch großflächige Entwaldung wird Kohlendioxid (CO2) in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ angereichert. Diese Anreicherung wurde durch die Wissenschaft unzweifelhaft nachgewiesen.</p><p>Die weltweite Kohlendioxid-Konzentration lag im Jahr 2024 bei 422,79 (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a>⁠) Kohlendioxid (<a href="https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt">NOAA 2024</a>). Hinzu kommen Konzentrationen weiterer Treibhausgase, die ebenfalls zum weltweiten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ beitragen.</p><p>Die <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-misst-neue-rekordwerte-fuer-kohlendioxid">Auswertung von Messungen</a> der atmosphärischen Kohlendioxid-Konzentration für das Jahr 2015 an den Messstationen des Umweltbundesamtes Schauinsland (Südschwarzwald) und auf der Zugspitze hat gezeigt, dass in diesem Jahr die Konzentration an beiden Stationen im Jahresdurchschnitt erstmals über 400 µmol/mol (ppm) lag. Zum Vergleich: Die Kohlendioxid-Konzentration aus vorindustrieller Zeit lag bei etwa 280 µmol/mol (ppm).</p><p>Auf Deutschlands höchstem Gipfel sind die Messwerte besonders repräsentativ für die Hintergrundbelastung der Atmosphäre, da die Zuspitze häufig in der unteren freien ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Troposphre#alphabar">Troposphäre</a>⁠ liegt und somit weitestgehend unbeeinflusst von lokalen Quellen ist. Im Jahr 2024 stieg der Jahresmittelwert auf der Zugspitze auf 424,2 µmol/mol (ppm) (siehe Abb. „Kohlendioxid-Konzentration in der Atmosphäre (Monatsmittel)“).</p><p>Lange Messreihen ergeben ein zuverlässiges Maß für den globalen Anstieg der Kohlendioxid-Konzentration. Dank ihrer Genauigkeit ermöglichen sie es, den Effekt der Verbrennung fossiler Brennstoffe von natürlichen Konzentrations-Schwankungen zu unterscheiden. Auf dieser Grundlage kann die langfristige Veränderung des Kohlendioxid-Vorrats in der Atmosphäre mit Klimamodellen genauer analysiert werden.</p><p>Die Auswertung der Messreihe vom aktiven Vulkan Mauna Loa auf Hawaii werden zur Bestimmung des globalen Kohlendioxid-Anstiegs genutzt, da sich die Messstation in größer Höhe und weit entfernt von störenden Kohlendioxidquellen befindet. Während in den 1960er-Jahren der jährliche Anstieg auf Mauna Loa (aktiver Vulkan auf Hawaii, wo) im Mittel noch bei 0,86 µmol/mol (ppm) Kohlendioxid lag, stieg der Welttrend in den vergangenen 15 Jahren im Mittel auf 2,47 µmol/mol (ppm) pro Jahr, in Mauna Loa auf 2,5 µmol/mol (ppm) pro Jahr. Gegenüber den 1950er-Jahren wurde damit der globale Kohlendioxid-Anstieg annähernd verdreifacht.</p><p>Methan</p><p>Bis 2024 stieg die weltweite Methan-Konzentration bis etwas über 1929,7 nmol/mol (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>⁠).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 2003 nmol/mol (ppb) gemessen (siehe Abb. „Methan-Konzentration in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ (Monats- und Jahresmittelwerte)“).</p><p>Lachgas</p><p>Weltweit lag die Lachgas-Konzentration im Jahr 2024 bei über 337,7 nmol/mol (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>⁠).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 338,5 nmol/mol (ppb) gemessen (siehe Abb. „Lachgas-Konzentration in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ (Monatsmittelwerte)“).</p><p>Beitrag langlebiger Treibhausgase zum Treibhauseffekt</p><p>In der Summe bilden Kohlendioxid (CO2), Methan, Lachgas und die halogenierten Treibhausgase den sogenannten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhauseffekt#alphabar">Treibhauseffekt</a>⁠: Die langlebigen Treibhausgase leisteten 2023 einen Beitrag zur globalen Erwärmung <a href="http://www.esrl.noaa.gov/gmd/aggi/aggi.html">(NOAA 2024)</a> von insgesamt 3,485 W/m² (Watt pro Quadratmeter). Verglichen mit dem Stand von 1990 ergibt dies eine Zunahme von fast 52 %. Dabei leistet atmosphärisches CO2 den vom Menschen in erheblichem Umfang mit verursachten Hauptbeitrag zur Erwärmung des Erdklimas. In Folge dieser Klimaerwärmung nimmt auch der sehr mobile und wechselnd wirkende Wasserdampf in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ zu. Im Vergleich zu CO2 ist dieser zwar deutlich maßgebender für die Erwärmung, atmosphärisches CO2 bleibt aber der vom Menschen verursachte Hauptantrieb.</p><p>Wie stark die verschiedenen langlebigen Klimagase im Einzelnen zur Erwärmung beitragen, ist in der Abbildung „Beitrag zum Treibhauseffekt durch Kohlendioxid und langlebige Treibhausgase 2023“ zu sehen. Der größte Anteil dabei entfällt auf Kohlendioxid mit etwa 66 %, gefolgt von Methan mit 16 %, Lachgas mit 6%, und den halogenierten Treibhausgasen insgesamt mit 12 %.</p><p>Obergrenze für die Treibhausgas-Konzentration</p><p>Um die angestrebte Zwei-Grad-Obergrenze der atmosphärischen Temperaturerhöhung mit einer Wahrscheinlichkeit von mindestens 66 % zu unterschreiten, müsste die gesamte ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Konzentration (Kohlendioxid, Methan, Lachgas und F-Gase) in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ bis zum Jahrhundertende bei rund 450 ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a>⁠ Kohlendioxid-Äquivalenten stabilisiert werden. Dabei ist eine kurzfristige Überschreitung dieses Konzentrationsniveaus möglich (<a href="https://www.de-ipcc.de/270.php">IPCC-Synthesebericht</a>).</p><p>2023 lag die gesamte Treibhausgas-Konzentration bei 534 ppm Kohlendioxid-Äquivalenten (siehe Abb. „Treibhausgas-Konzentration in der Atmosphäre“). Um die angestrebte Stabilisierung zu erreichen, müssen die globalen Treibhausgas-Emissionen gesenkt werden. In den meisten Szenarien des Welt-Klimarates (IPCC) entspricht dies einer Menge von weltweiten Treibhausgas-Emissionen zwischen 30 und 50 Milliarden Tonnen (Mrd. t) Kohlendioxid-Äquivalenten im Jahr 2030. Im weiteren Verlauf bis 2050 müssten die Emissionen weltweit zwischen 40 % und 70 % unter das Niveau von 2010 gesenkt werden und bis Ende des Jahrhunderts auf nahezu null sinken. Dazu sind verbindliche Zielsetzungen im Rahmen einer globalen Klimaschutzvereinbarung erforderlich.</p><p>Im Dezember 2015 vereinbarte die Staatengemeinschaft auf der 21. Vertragsstaatenkonferenz unter der <a href="https://www.umweltbundesamt.de/daten/klima/klimarahmenkonvention">Klimarahmenkonvention</a> (COP21) das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠-Übereinkommen von Paris. Darin ist zum ersten Mal in einem völkerrechtlichen Abkommen verankert, dass die durchschnittliche globale Erwärmung auf deutlich unter zwei Grad begrenzt werden soll. Darüber hinaus sollen sich die Vertragsstaaten bemühen, den globalen Temperaturanstieg möglichst unter 1,5 Grad zu halten. Um dieses Ziel zu erreichen, müssen die Treibhausgas-Emissionen sobald wie möglich abgesenkt werden. In der zweiten Hälfte des Jahrhunderts soll eine globale Balance der Quellen und das Senken von Treibhausgas-Emissionen (Netto-Null-Emissionen) erreicht werden. Das bedeutet die Dekarbonisierung der Weltwirtschaft und damit einen Ausstieg aus der Nutzung fossiler Energieträger. Enorme Anstrengungen sind notwendig, um dieses Ziel zu erreichen, und zwar nicht nur in Deutschland, sondern in allen Staaten, insbesondere den Industrienationen. Zur Erreichung der Klimaziele hat Deutschland das <a href="https://www.bundesregierung.de/resource/blob/974430/1679914/e01d6bd855f09bf05cf7498e06d0a3ff/2019-10-09-klima-massnahmen-data.pdf?download=1">Klimaschutzprogramm 2030</a> verabschiedet.</p><p>Weiterführende Informationen</p><p>Auf den folgenden Seiten finden Sie weiterführende Informationen zu internationalen Klimabeobachtungssystemen:</p><p><em>Wir danken der Nationalen Administration für die Ozeane und die Atmosphäre (NOAA Global ⁠<a href="https://www.umweltbundesamt.de/service/glossar/m?tag=Monitoring#alphabar">Monitoring</a>⁠ Division) in Boulder, USA und dem Scripps Institut für Ozeanography, La Jolla, USA für die CO2-Daten des GAW Globalobservatoriums von Mauna Loa, Hawaii, sowie dem Mace Head GAW Globalobservatorium, Irland und dem AGAGE Projekt für die Lachgasdaten.</em></p>

CO2 Mofetten - Überwachung natürlicher CO2 Emissionen unter Verwendung eines Netzwerks aus low-cost Sensoren

Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.

Waldökosystemforschung in der Abteilung des Instituts für Ressourcenschutz am Ökologie-Zentrum (ICP-Forests)

Die Wälder der Erde haben eine grundlegende Bedeutung für die Zukunft der Menschheit. Sie bilden einen Großteil der Erdoberfläche und sind wichtiger Lebensraum der an Land lebenden Tier- und Pflanzenarten. Wälder produzieren nutzbare Stoffe, regulieren Stoff- und Wasserfüsse, die CO2-Konzentration der Atmosphäre sowie das globale und regionale Klima. Der Schutz der Wälder ist von zentraler Bedeutung für eine nachhaltige Existenz der Menschen in sicher funktionierenden Beziehungen zwischen Ökosystemen und der Umwelt. Weil Waldökosysteme auch bei forstlicher Nutzung weitgehend selbstorganisiert funktionieren, sind sie ein spannendes Gebiet der Ökosystemforschung. Die Komplexität von Waldökosystemen ist eine Herausforderung für das Umweltmanagement schlechthin. Im Prinzip zielt es darauf ab, Störungen von Strukturen und Wechselwirkungen mit der Umwelt so gering wie möglich zu halten oder deren Folgen zu therapieren. Dies ist nur möglich, wenn Ökosysteme gesamtheilich betrachtet werden. Allgemeine Ziele von Ökosystemforschung sind deshalb vertieftes Verständnis der Systeme zu entwickeln, Kritische Zustände zu erkennen sowie Möglichkeiten und Grenzen nachhaltiger Entwicklung aufzuzeigen. Unsere Arbeitsgruppe beschäftigt sich damit, Indikatoren für den Zustand von Ökosystemen zu finden, die Dynamik ihrer Umweltbeziehungen zu beschreiben und Grenzen der Belastbarkeit zu erkennen. Ziel ist es, auf systemtheoretischer Grundlage gesamtheitliche Vorstellungen über die Entwicklung von Ökosystems zu bekommen, und ihre Anpassungsfähigkeit an Umweltveränderungen abzuschätzen. Voraussetzung dafür ist eine intensive Systembeobachtung. Datenbasis unserer Forschung an Wäldern bildet die Beobachtung eines depositionsbelasteten und stark versauerten Buchenwaldökosystems. Dementsprechend messen wir fortlaufend nicht nur die Einträge der atmosphärischen Deposition säurewirkamer Luftschadstoffe, Stoffkonzentrationen in der Bodenlösung und Stoffausträge, sondern auch andere Stressgrößen. Die Philosophie gesamtheitlich orientierterer Ökosystemforschung und ökologischer Umweltbeobachtung findet sich in verschiedenen Monitoring Programmen wieder (Schimming et al. 2010). Deshalb kooperiert das Ökologie-Zentrum in solchen Netzwerken und beteiligt sich wegen der weitgehenden Zielkonformität auch am Forstlichen Monitorings der EU. Der Beitrag besteht mit dem bereits genannten, sehr langfristig untersuchten Buchenwaldökosystem im traditionellen Untersuchungsgebiet des Ökologie-Zentrums zum Level II-Programm des ICP-Forests. Das Institut führt die Untersuchungen dort im Auftrag des Ministeriums für Landwirtschaft, Umwelt und Ländliche Räume (MLUR) durch. Seitens des Ökologie-Zentrums Institute und eines Vorgängerprojektes existieren Datenreihen, die sich nunmehr mit einer Länge von mehr als 20 Jahren über einen weitaus längeren Zeitraum erstrecken, als seit Einrichtung des Level II-Programms im Jahre 1995 vergangen ist.

Spätquartäre Kohlenstoffisotopie des CO2 der Bodenluft im Spiegel pedogener Karbonate

Die Böden terrestrischer Ökosysteme sind ein wichtiger Steuerungsfaktor der CO2-Konzentration in der Erdatmosphäre. Bei Modellierung von globalen CO2-Zyklen ist die Forschung der klimarelevanten Gase auf eindeutige Vorstellungen von der Kohlenstoffisotopie des CO2 der Bodenluft und ihrer Veränderungen angewiesen. Die bis heute vorhandenen Daten umfassen nur eine relativ kurzfristige Dynamik (Stunden bis Monate). Die Fragen nach den langfristigen Fluktuationen (Jahrtausende) der d13CWerte im bodenbürtigen Kohlendioxid und den sie kontrollierenden Faktoren sowie nach dem Zusammenhang mit dem CO2-Haushalt der spätquartären Atmosphäre bleiben offen. Ziel des Vorhabens ist es, die pedogenen Karbonate als Archive der langfristigen, spätquartären d13C-Dynamik des CO2 der Bodenluft zu untersuchen. Dem Arbeitskonzept liegen Modellvorstellungen der Produktion und Diffusion der 13CO2 im Boden zugrunde. Bei den Forschungsobjekten handelt es sich um laminierte Kalkablagerungen (Kalkkutanen) an Steinen aus holozänen Böden (Mediterraneis, Mitteleuropa, Sibirien) und sekundäre Karbonate aus spätpleistozänen Löss-Paläoboden-Sequenzen (Mitteleuropa). Die Untersuchungsmethoden: d13C, d18O, 14C-Altersbestimmung und Mikromorphologie. Bei der Auswertung der Ergebnisse sollen die Ursachen der langfristigen 13CO2-Dynamik der Bodenluft und die sie kontrollierenden Faktoren im Zentrum stehen.

Wechselwirkungen zwischen N2-Fixierung und Denitrifizierung in einem Erdsystem-Modell mit flexibler Stöchiometrie und deren Einfluss auf das marine Stickstoffinventar in einem sich wandelnden Klima

Der Schlüssel zu Verständnis und Projektion des künftigen Stickstoffinventars des Ozeans und der Veränderung der Biologischen Pumpe im globalen Klimawandel liegt in der Frage, wie und wie stark die Fixierung von atmosphärischem Stickstoff und die Denitrifizierung im Ozean gekoppelt sind. Während in bisherigen Modellstudien Stickstofffixierung und Denitrifizierung eng gekoppelt sind, zeigt ein neu entwickeltes optimalitätsbasiertes Ökosystemmodell mit flexibler Stöchiometrie (OPEM) im globalen UVic-ESCM eine deutlich schwächere Kopplung. In diesem Projekt sollen die Faktoren und Mechanismen, die die Kopplung steuern, identifiziert und ihre Veränderung in ver- schiedenen Klimaszenarien untersucht werden. Hierzu wird OPEM in einem vorindustriellen Szenario, einem Szenario der Maximalphase der letzen Eiszeit und einem heutigen Szenario angewendet und die Sensitivität der Modellergebnisse in Bezug auf das ozeanische Stickstoffinventar und die biolo- gische Kohlenstoffpumpe bewertet. Das Ziel des Projekts ist es, die Steuerungsprozesse des marinen Stickstoffinventars genauer abzubilden, um bessere Projektionen der biogeochemischen Kreisläufe im Ozean und ihrer Auswirkungen auf den CO2-Gehalt der Atmosphäre zu ermöglichen.

Auswirkungen von Trockenheit und erhöhtem CO2 auf die Blattrollkrankheit der Weinrebe: Eine Untersuchung der Interaktionen zwischen Pflanze, Vektor und Virus

In Zeiten des Klimawandels wird die Pflanzengesundheit durch kombinierten Stress durch abiotischen, klimawandelbedingten Faktoren und biotischem Faktoren durch Schädlinge und Krankheitserreger beeinträchtigt. Dieses Projekt zielt darauf ab, die Auswirkungen abiotischer, klimawandelbedingte Stressfaktoren, wie z. B. erhöhtem atmosphärischen CO2-Gehalt (eCO2) und Trockenstress, auf die Interaktion zwischen Weinreben, Blattrollviren (GLRaV), und virusübertragenden Schmierläusen zu untersuchen. GLRaV, insbesondere GLRaV-3, verändert die CO2-Assimilation, die Wassernutzungseffizienz sowie die primären und sekundären Stoffwechselprodukte der Pflanze, was letzendlich zu Ertragsminderungen, verzögerter Fruchtreife und schlechter Traubenqualität führt. Das Virus wird durch infiziertes Vermehrungsmaterial und phloemsaugende Insekten, wie z. B. Schmierläuse, verbreitet. Es ist bekannt, dass eCO2- und Wasserstress einen erheblichen Einfluss auf die Pflanzenphysiologie und die Schädlingsbekämpfung haben kann. Außerdem weiß man, dass Pflanzenviren biotischen Stress für die Pflanzen verursachen und das Verhalten der Virusvektoren verändern können. Gleichzeitig werden Viren von denselben klimawandelbedingten abiotischen Stressfaktoren beeinflusst, wie die anderen Mitglieder des Ökosystems. Es gibt nur sehr wenige Studien über die Auswirkungen des Klimawandels auf Virusinfektionen auf Weinreben und keine einzige über die Auswirkungen auf Schmierläuse als Virusvektoren. Schlussfolgerungen aus anderen Pathosystemen zu ziehen, gestaltet sich schwierig, da die Auswirkungen von abiotischem, klimawandelbedingtem Stress oft artspezifisch sind. Bisher hat sich die Forschung vor allem mit den Wechselwirkungen einzelner Klimawandelparameter mit Pflanzen, Insekten oder Krankheitserregern befasst. Um die Wechselwirkungen zwischen mehreren Stressoren und die komplexen Beziehungen zwischen Pflanzen, Krankheitserregern und Vektoren zu verstehen, sind breitere Forschungsansätze nötig. Nur so können wirksame Anpassungsstrategien entwickelt werden um Pflanzen in der Zukunft gesund und produktiv zu halten. Im Rahmen des Projekts werden eine Reihe von Experimenten durchgeführt, bei denen Weinreben zwei Klimawandelparametern (Wasserstress + CO2) in Kombination mit biotischem Stress durch eine GLRaV-3-Infektion ausgesetzt werden. Untersucht werden die Mechanismen (Genexpression) und die Auswirkungen auf die Pflanzen (Aminosäuren, Phenole, C/N, Zucker, Chlorophyll) und den Insektenvektor (Fressverhalten, Fitness), zusätzlich zu klassischen Übertragungsexperimenten mit GLRaV. Die Forderung nach multifaktoriellen Stress-Experimenten wird seit Jahrzehnten erhoben. Diese Experimente sind ehrgeizig und komplex, aber sie sind der notwendige nächste Schritt, um Erkenntnisse über die zukünftige Entwicklung der Blattrollkrankheit zu gewinnen.

Über Kohlenstoff-Entnahme aus der Atmosphäre bis hin zum Erreichen des Ziels des Pariser Klimakommens: Temperature Stabilisation

Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.

Produktion und Konsumption (Flüsse) der klimarelevanten Spurengase, Lachgas und Methan in einem Dauergrünland unter steigender atmosphärischer CO2-Konzentration

Außer dem bekannten Treibhausgas Kohlendioxid (CO2) existieren weitere stark klimawirksame Spurengase biologischen Ursprungs, z.B. Lachgas (N2O) und Methan (CH4), die mikrobiell im Boden produziert (N2O, CH4) oder im Falle des Methans auch verbraucht (oxidiert) werden. Die steigende atmosphärische CO2-Konzentration kann sich über die Pflanzen in vielfacher Weise auf die bodenmikrobiellen, Spurengasproduzierenden Prozesse auswirken. So ist beispielsweise nachgewiesen worden, dass der Wasserverbrauch der Pflanzen unter erhöhtem CO2 häufig sinkt und die Abgabe von leicht zersetzbarem Kohlenstoff an den Boden (Wurzelexudation) steigt. Beides könnte die Denitrifikation und damit die N2O-Produktion begünstigen, ebenso die Methanproduktion, wenn im Boden anaerobe Bedingungen (z.B. durch Überflutung) eintreten. Steigende Bodenfeuchte würde zugleich die Sauerstoff-abhängige Methanoxidation im Oberboden hemmen. Zu diesem Thema existieren bislang weltweit nur Kurzzeit- und Laborstudien. Im hier vorgestellten Projekt werden im Freilandexperiment die Langzeitauswirkungen steigender atmosphärischer CO2-Konzentrationen über das System Pflanze-Boden auf die Flüsse der klimawirksamen Spurengase N2O und CH4 in einem artenreichen Dauergrünland untersucht. Hierzu gelangt ein im Institut für Pflanzenökologie neuentwickeltes Freiland-CO2-Anreicherungssystem (FACE) zur Anwendung, bei dem die CO2-Konzentration in drei Anreicherungsringen seit Mai 1998 um etwa 20 Prozent gegenüber den drei Kontrollringen erhöht wurde. Über die Jahresbilanzierungen der Spurengasflüsse sowie über begleitende Prozessstudien soll geklärt werden, wie und auf welche Weise erhöhtes CO2 auf die N2O- und CH4-Spurengasflüsse rückwirkt. Die ersten Ergebnisse zeigen deutlich, dass in einem etablierten artenreichen Ökosystem wie dem untersuchten Feuchtgrünland zuerst die unterirdischen Prozesse auf die steigenden CO2-Konzentrationen reagierten (Bestandesatmung). Die oberirdische Biomasse zeigte erst nach etwa 1,5 Jahren der CO2-Anreicherung einen signifikanten Zuwachs gegenüber den Kontrollflächen. Im Jahr 1997, vor dem Beginn der CO2 -Anreicherung, waren sowohl die N2O-Emissionen als auch die CH4 Flüsse auf den (späteren) Anreicherungs- und den Kontrollflächen fast identisch. Seit Beginn der Anreicherung hingegen sind die N2O-Emissionen vor allem während der Vegetationsperiode dramatisch angestiegen: auf 278 Prozent der Emissionen der Kontrollflächen. Die Methanoxidation war rückläufig unter erhöhtem CO2: Mittlerweile oxidieren die CO2 Anreicherungsflächen 20 Prozent weniger CH4 als die Kontrollflächen (Jahr 2000), wobei auch hier der größte Unterschied während der Vegetationsperiode auftrat. Eine erhöhte Bodenfeuchte kommt als Erklärung nicht in Frage, da sich diese nicht geändert hat.

Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Modellvergleichende Analyse von CDR Methoden (CDR-MIA)

Die voranschreitenden, anthropogenen CO2-Emissionen verändern das Klima mit bedrohlichen, weit reichenden und irreversiblen Auswirkungen. Daher steigt das Interesse an sogenannten Carbon Dioxide Removal (CDR) Maßnahmen, um so zusätzlich zur Migration und Adaption, die Möglichkeit negativer Emissionen zu eröffnen. Die potenziellen positiven und negativen Auswirkungen durch CDR sind jedoch nicht ausreichend verstanden und quantifiziert. Das Hauptziel des Projektes ist die Analyse der Experimente aus der 1. Phase des Carbon Dioxide Removal Model Intercomparison Projects (CDR-MIP), um das Potenzial und die Risiken großskaliger CDR Methoden besser bewerten zu können. CDR-MIP ist eine neu gegründete Initiative, die eine Reihe von Erdsystemmodellen zusammenbringt, um CDR in einem einheitlichen Rahmen zu untersuchen. Die erste Projektphase, bestehend aus idealisierten Experimenten zu CO2 Entnahme aus der Atmosphäre, Aufforstung und Ozean-Alkalinisierung. Sie dient der Beantwortung folgender Kernfragen a) Reversibilität der Klimaänderung (z.B. zu heutige oder vorindustrielle CO2 Konzentration in der Atmosphäre) und b) potenzielle Wirksamkeit, Feedbacks, zeitlicher Rahmen und Nebenwirkungen unterschiedlicher CDR Maßnahmen. Die bisherige Arbeit diente der Entwicklung der Struktur des CDR-MIPs und weltweit haben sich einige Modellgruppen dazu bereit erklärt die entsprechenden Simulationen durchzuführen. Das Projekt beruht bislang auf freiwilliger Basis. Das macht eine schnelle Verarbeitung der Ergebnisse unwahrscheinlich. Folglich wird eine gezielte Förderung benötigt, um eine zeitnahe Analyse der Ergebnisse und deren öffentlichen Verbreitung zu gewährleisten. Die Analyseergebnisse sollen darüber hinaus die angenommenen Effektivität von CDR Technologien in den 'Integrated Assessment Model (IAM) - generierten Shared Socioeconomic Pathway (SSP) Szenarien informieren, welche die Forschung und Bewertung des Klimawandels unterstützen. Bislang werden bei in den IAM Simulation mit CDR keine Feedbacks des Kohlenstoffkreislaufes berücksichtigt. Eine Wissenslücke die wir schließen wollen. Wir schlagen vor die Ergebnisse aus CDR-MIP zu nutzen, um eine auf den Feedbacks im Kohlenstoffkreislaufes basierende Discount-Rate zu berechnen, die dann für die Kalibrierung der SSP Szenarien und erneuter Modellläufe in einem IAM genutzt werden kann. Zusätzlich werden neue Experimente erstellt und durchgeführt, um die Reaktion des Klimasystems auf die gleichzeitige Anwendung mehrerer CDR Methoden analysieren zu können. Die Kombination der Methoden basiert auf den gegebenen CDR-MIP Experimenten und beinhaltet z.B. eine Kombination von Aufforstung und der Ozean-Alkalinisierung. Anschließende Analysen ermöglichen den Vergleich der Wirksamkeit und Risiken kombinierter und einzelner CDR Methoden. Die Projektergebnisse würden eine umfassende Bewertung von CDR bieten, die allen Projekten innerhalb des SPP verfügbar gemacht und mit den Projektpartnern iterativ diskutiert werden.

1 2 3 4 515 16 17