An international research team has reconstructed how the atmospheric concentration of carbon dioxide (CO2) developed between 335 and 265 million years ago.
Atmosphärische Treibhausgas-Konzentrationen Bedingt durch seine hohe atmosphärische Konzentration ist Kohlendioxid nach Wasserdampf das wichtigste Klimagas. Die globale Konzentration von Kohlendioxid ist seit Beginn der Industrialisierung um gut 50 % gestiegen. Demgegenüber war die Kohlendioxid-Konzentration in den vorangegangenen 10.000 Jahren annähernd konstant. Konzentrationen weiterer Treibhausgase tragen ebenfalls zum Klimawandel bei. Kohlendioxid Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle und Erdöl) und durch großflächige Entwaldung wird Kohlendioxid (CO 2 ) in der Atmosphäre angereichert. Diese Anreicherung wurde durch die Wissenschaft unzweifelhaft nachgewiesen. Die weltweite Kohlendioxid-Konzentration lag im Jahr 2023 bei 419,55 µmol/mol ( ppm ) Kohlendioxid ( NOAA 2023 ). Hinzu kommen Konzentrationen weiterer Treibhausgase, die ebenfalls zum weltweiten Klimawandel beitragen. Die Auswertung von Messungen der atmosphärischen Kohlendioxid-Konzentration für das Jahr 2015 an den Messstationen des Umweltbundesamtes Schauinsland (Südschwarzwald) und auf der Zugspitze hat gezeigt, dass in diesem Jahr die Konzentration an beiden Stationen im Jahresdurchschnitt erstmals über 400 µmol/mol (ppm) lag. Zum Vergleich: Die Kohlendioxid-Konzentration aus vorindustrieller Zeit lag bei etwa 280 µmol/mol (ppm). Auf Deutschlands höchstem Gipfel sind die Messwerte besonders repräsentativ für die Hintergrundbelastung der Atmosphäre, da die Zuspitze häufig in der unteren freien Troposphäre liegt und somit weitestgehend unbeeinflusst von lokalen Quellen ist. Im Jahr 2023 stieg der Jahresmittelwert auf der Zugspitze auf 420,7 µmol/mol (ppm) (siehe Abb. „Kohlendioxid-Konzentration in der Atmosphäre (Monatsmittel)“). Lange Messreihen ergeben ein zuverlässiges Maß für den globalen Anstieg der Kohlendioxid-Konzentration. Dank ihrer Genauigkeit ermöglichen sie es, den Effekt der Verbrennung fossiler Brennstoffe von natürlichen Konzentrations-Schwankungen zu unterscheiden. Auf dieser Grundlage kann die langfristige Veränderung des Kohlendioxid-Vorrats in der Atmosphäre mit Klimamodellen genauer analysiert werden. Die Auswertung der Messreihe vom aktiven Vulkan Mauna Loa auf Hawaii werden zur Bestimmung des globalen Kohlendioxid-Anstiegs genutzt, da sich die Messstation in größer Höhe und weit entfernt von störenden Kohlendioxidquellen befindet. Während in den 1960er-Jahren der jährliche Anstieg auf Mauna Loa (aktiver Vulkan auf Hawaii, wo) im Mittel noch bei 0,86 µmol/mol (ppm) Kohlendioxid lag, stieg der Welttrend in den vergangenen 15 Jahren im Mittel auf 2,35 µmol/mol (ppm) pro Jahr, in Mauna Loa auf 2,41 µmol/mol (ppm) pro Jahr. Gegenüber den 1950er-Jahren wurde damit der globale Kohlendioxid-Anstieg annähernd verdreifacht. Methan Bis 2023 stieg die weltweite Methan-Konzentration bis etwas über 1921,9 nmol/mol ( ppb ). An der Messstation Zugspitze wurde für 2023 ein Jahresmittelwert von 1994,0 nmol/mol (ppb) gemessen (siehe Abb. „Methan-Konzentration in der Atmosphäre (Monats- und Jahresmittelwerte)“). Lachgas Weltweit lag die Lachgas-Konzentration im Jahr 2023 bei über 336,7 nmol/mol ( ppb ). An der Messstation Zugspitze wurde für 2023 ein Jahresmittelwert von 337,4 nmol/mol (ppb) gemessen (siehe Abb. „Lachgas-Konzentration in der Atmosphäre (Monatsmittelwerte)“). Beitrag langlebiger Treibhausgase zum Treibhauseffekt In der Summe bilden Kohlendioxid (CO 2 ), Methan, Lachgas und die halogenierten Treibhausgase den sogenannten Treibhauseffekt : Die langlebigen Treibhausgase leisteten 2022 einen Beitrag zur globalen Erwärmung (NOAA 2023) von insgesamt 3,398 W/m² (Watt pro Quadratmeter). Verglichen mit dem Stand von 1990 ergibt dies eine Zunahme von fast 49 %. Dabei leistet atmosphärisches CO 2 den vom Menschen in erheblichem Umfang mit verursachten Hauptbeitrag zur Erwärmung des Erdklimas. In Folge dieser Klimaerwärmung nimmt auch der sehr mobile und wechselnd wirkende Wasserdampf in der Atmosphäre zu. Im Vergleich zu CO 2 ist dieser zwar deutlich maßgebender für die Erwärmung, atmosphärisches CO 2 bleibt aber der vom Menschen verursachte Hauptantrieb. Wie stark die verschiedenen langlebigen Klimagase im Einzelnen zur Erwärmung beitragen, ist in der Abbildung „Beitrag zum Treibhauseffekt durch Kohlendioxid und langlebige Treibhausgase 2022“ zu sehen. Der größte Anteil dabei entfällt auf Kohlendioxid mit etwa 63,9 %, gefolgt von Methan mit 19,1 %, Lachgas mit 5,7%, und den halogenierten Treibhausgasen insgesamt mit 11,3 %. Obergrenze für die Treibhausgas-Konzentration Um die angestrebte Zwei-Grad-Obergrenze der atmosphärischen Temperaturerhöhung mit einer Wahrscheinlichkeit von mindestens 66 % zu unterschreiten, müsste die gesamte Treibhausgas -Konzentration (Kohlendioxid, Methan, Lachgas und F-Gase) in der Atmosphäre bis zum Jahrhundertende bei rund 450 ppm Kohlendioxid-Äquivalenten stabilisiert werden. Dabei ist eine kurzfristige Überschreitung dieses Konzentrationsniveaus möglich ( IPCC-Synthesebericht ). 2022 lag die gesamte Treibhausgas-Konzentration bei 523 ppm Kohlendioxid-Äquivalenten (siehe Abb. „Treibhausgas-Konzentration in der Atmosphäre“). Um die angestrebte Stabilisierung zu erreichen, müssen die globalen Treibhausgas-Emissionen gesenkt werden. In den meisten Szenarien des Welt-Klimarates (IPCC) entspricht dies einer Menge von weltweiten Treibhausgas-Emissionen zwischen 30 und 50 Milliarden Tonnen (Mrd. t) Kohlendioxid-Äquivalenten im Jahr 2030. Im weiteren Verlauf bis 2050 müssten die Emissionen weltweit zwischen 40 % und 70 % unter das Niveau von 2010 gesenkt werden und bis Ende des Jahrhunderts auf nahezu null sinken. Dazu sind verbindliche Zielsetzungen im Rahmen einer globalen Klimaschutzvereinbarung erforderlich. Im Dezember 2015 vereinbarte die Staatengemeinschaft auf der 21. Vertragsstaatenkonferenz unter der Klimarahmenkonvention (COP21) das Klimaschutz -Übereinkommen von Paris. Darin ist zum ersten Mal in einem völkerrechtlichen Abkommen verankert, dass die durchschnittliche globale Erwärmung auf deutlich unter zwei Grad begrenzt werden soll. Darüber hinaus sollen sich die Vertragsstaaten bemühen, den globalen Temperaturanstieg möglichst unter 1,5 Grad zu halten. Um dieses Ziel zu erreichen, müssen die Treibhausgas-Emissionen sobald wie möglich abgesenkt werden. In der zweiten Hälfte des Jahrhunderts soll eine globale Balance der Quellen und das Senken von Treibhausgas-Emissionen (Netto-Null-Emissionen) erreicht werden. Das bedeutet die Dekarbonisierung der Weltwirtschaft und damit einen Ausstieg aus der Nutzung fossiler Energieträger. Enorme Anstrengungen sind notwendig, um dieses Ziel zu erreichen, und zwar nicht nur in Deutschland, sondern in allen Staaten, insbesondere den Industrienationen. Zur Erreichung der Klimaziele hat Deutschland das Klimaschutzprogramm 2030 verabschiedet. Weiterführende Informationen Auf den folgenden Seiten finden Sie weiterführende Informationen zu internationalen Klimabeobachtungssystemen: Thema: Globale Überwachung der Atmosphäre (GAW) WMO: Global Atmosphere Watch (GAW) WMO: Global Climate Observing System (GCOS) Weltdatenzentrum für Treibhausgase (WDCGG) BMVBS/DWD: Die deutschen Klimabeobachtungssysteme Wir danken der Nationalen Administration für die Ozeane und die Atmosphäre (NOAA Global Monitoring Division) in Boulder, USA und dem Scripps Institut für Ozeanography, La Jolla, USA für die CO 2 -Daten des GAW Globalobservatoriums von Mauna Loa, Hawaii, sowie dem Mace Head GAW Globalobservatorium, Irland und dem AGAGE Projekt für die Lachgasdaten.
Bodennahes Ozon ist ein phytotoxischer Luftschadstoff dessen troposphärische Hintergrundkonzentration sich im Zuge der Industrialisierung vervielfacht hat und in Zukunft wahrscheinlich weiter ansteigen wird. Ozon wird von Pflanzen über die Stomata aufgenommen, wo es oxidative Stress auslöst und letztendlich die Nettoprimärproduktion verringert. Das schwächt die CO2-Senkenstärke von Forstökosystemen und beeinträchtigt die Wirtschaftlichkeit wichtiger europäischer Baumarten wie Buche und Fichte. Über die im Mapping Manual (CLRTAP 2017) zusammengefassten und vom Umweltbundesamt verwendeten Modelle (DO3SE, FO3REST) lassen sich ozonbedingte jährliche Produktivitätseinbußen über artspezifische Dosis Wirkungs-Funktionen berechnen. Voraussetzung dafür ist eine möglichst realistische Abschätzung der Ozonaufnahme als Funktion der stomatären Leitfähigkeit (als PODY, phytotoxische Ozondosis oberhalb eines Schwellenwerts von Y nmol m-2 s -1). Aufgrund bisher fehlender technischer Möglichkeiten wurden die verwendeten Modelle nicht auf Basis von Messungen der stomatären Ozonaufnahme validiert. Außerdem fehlt für Waldbaumarten, im Gegensatz zu wichtigen Kulturpflanzen, eine Wichtungsfunktion, welche die Interaktion zwischen der kumulierten Ozonaufnahme und der Stomataregulierung abbildet. Zusätzlich existiert bisher keine Möglichkeit, das Ozonrisiko für zukünftige, durch steigende Temperaturen und erhöhte atmosphärische CO2-Konzentrationen gekennzeichnete Szenarien zu bewerten. Im vorliegenden Projekt wurden daher sowohl eine Ozon- als auch eine CO2-Wichtungsfunktion (fO3, fCO2) entwickelt und für Buche und Fichte parametrisiert. Dazu wurden aus Naturverjüngung entnommene Buchen und Fichten über drei Vegetationsperioden in den Klimakammern der TUMmesa-Phytotronanlage kultiviert und verschiedenen dynamischen, auf einen Waldstandort im Spessart regionalisierten Klimaszenarien ausgesetzt. Die Szenarien beinhalteten einen Ozongradienten unter gegenwärtigen Klimabedingungen, sowie zwei Zukunftsszenarien für das Ende des 21. Jahrhunderts mit unterschiedlich stark erhöhter Jahresmitteltemperatur und CO2-Konzentration. Die fO3-Funktion verdeutlichte im Modellansatz, dass bei Buche unter gegenwärtigen klimatischen Bedingungen bereits im Laufe des Blattaustriebs eine ozondosisbedingte Beeinträchtigung der stomatären Leitfähigkeit auftreten kann. Im Gegensatz dazu wurde die stomatäre Leitfähigkeit von Fichte nicht durch die Ozondosis beeinträchtigt. Durch Implementierung der fCO2-Funktion konnte gezeigt werden, dass unter steigendem CO2 in den Zukunftsszenarien eine Verringerung der stomatären Leitfähigkeit (insbesondere bei Buche) bei gleichzeitig aufrechterhaltener Produktivität zu erwarten ist. Dadurch werden die stomatäre Ozonaufnahme und somit die zu erwartenden Produktivitätseinbußen gegenüber der Gegenwart - abhängig von Unsicherheiten bei der zukünftigen Entwicklung der troposphärischen Ozonkonzentration - signifikant verringert sein. Über die Neuentwicklung eines Sensors (TransP) zur indirekten, kontinuierlichen in-situ Bestimmung der stomatären Ozonaufnahme konnten die Mapping Manual Modelle für Buche und Fichte validiert und deren Parametrisierung aktualisiert werden. Abschließend wurde ein Satz Transferfunktionen entwickelt, welche ein Abschätzen des PODY auf Grundlage von Xylemsaftflussmessungen an Buchen ermöglicht. Quelle: Forschungsbericht
Since the adoption of the 5th Assessment Report of the IPCC (AR5), there has been a growing discussion of methods for Carbon Dioxide Removal (CDR) from the atmosphere. With CDR as a supplement to GHG-emission reductions it would be possible to stabilize the CO2 concentration in the atmosphere more quickly or perhaps even to reduce it. Bioenergy combined with carbon capture and storage (BECCS) is the most commonly discussed CDR approach in the literature where it has been assessed to have the greatest carbon sequestration potential. This report provides a critical assessment of the assumptions behind the AR5 GHG-emission scenarios with regards to BECCS. Veröffentlicht in Climate Change | 09/2019.
Am 18. April 2017 überschritt die Kohlendioxid-Konzentration in der Erdatmosphäre erstmals die Marke von 410 ppm (parts per million). Die Messstation Mauna Loa auf Hawaii zeigte den Wert 410,28 ppm an, wie das US-Wissenschaftsportal Climate Central berichtete. Zuletzt gab es einen so hohen CO2-Gehalt mehreren Millionen Jahren. Seit 1958 überwachen Forscher am Vulkan Mauna Loa auf Hawaii die jährlichen Schwankungen des Treibhausgases in der Atmosphäre. Die Messstation befindet sich in 3.400 Metern Höhe am Nordhang des Vulkans. Als die Messungen im März 1958 begannen, lag der auf Mauna Loa gemessene Wert bei 315,71 ppm – und damit deutlich über dem vorindustriellen Niveau von 280 ppm.
On 16 September 1987, 24 States and the European Community signed the Montreal Protocol. It initiated the mandatory phase-out of chlorofluorocarbons (CFCs) and thus stopped the further destruction of the ozone layer by these substances. The switch to alternatives to CFCs with their high global warming potential also contributes to climate protection.Due to the worldwide implementation of the Montreal Protocol, ozone-depleting substances such as CFCs are hardly used today. Atmospheric concentrations of these substances are slowly declining due to natural decomposition processes and the size of the “ozone hole” over Antarctica is also becoming smaller.Because CFCs and other halogenated substances are also very effective greenhouse gases that heat up the climate up to 14,000 times more effective than carbon dioxide (CO2), the Montreal Protocol has contributed not only to protecting the ozone layer but also to climate protection.With the Kigali Amendment for the worldwide phase-down of climate-damaging hydrofluorocarbons (HFCs), which has been agreed on in October 2016, the Montreal Protocol was extended to a new group of substances.In a background paper on the 30th anniversary of the Montreal Protocol, the German Environment Agency describes the history of this important international agreement from the discovery of the “ozone hole” to its signing and implementation. In addition, the paper provides information on the HFC use today and on environmentally friendly substitutes and techniques, especially for refrigeration and air conditioning.
Am 23. Mai 2016, meldete die US-Wetterbehörde NOAA, dass die Erde einen weiteren unglücklichen Meilenstein erreicht habe. Die Messgeräte der NOAA registrierten am South Pole Observatory in der Antarktis eine Kohlendioxid-Konzentration in der Atmosphäre von mehr als 400 ppm.
Die Kohlendioxidkonzentration in der Erdatmosphäre erreichte einen neuen Meilenstein. Die US-amerikanische Wetter- und Ozeanografiebehörde NOAA teilte am 6. Mai 2015 mit, dass der Durchschnittswert aller weltweiten Messstationen erstmals seit Beginn der Aufzeichnungen im März für einen gesamten Monat über 400 ppm lag. Zum ersten Mal überhaupt hatten die NOAA-Wissenschaftler die Überschreitung der 400 ppm-Marke im Frühjahr 2012 berichtet, als alle Messstationen der Arktis den Wert erreichten. Im Mai 2013 überschritt die Messstation Mauna Loa auf Hawaii erstmals den Grenzwert - die Station gilt international als Referenzstation für die Kohlendioxid.
Am 26. Mai 2014 teilte die Weltorganisation für Meteorologie (WMO) in Genf mit, dass die Konzentration von Kohlendioxid (CO2) in der Atmosphäre ein neues Rekordniveau erreicht hat. Erstmals wurde in der nördlichen Hemisphäre im April 2014 die Grenze von 400 parts per million (ppm) übertroffen. Die Organisation erklärte, dass die Überschreitung dieser Schwelle symbolische und wissenschaftliche Bedeutung habe. Es handele sich um einen weiteren Beweis dafür, dass die Verbrennung fossiler Energien und weitere vom Menschen ausgelöste Emissionen für den steigenden Ausstoß klimaschädlicher Gase verantwortlich sind. Das Ergebnis aller Messstationen der WMO auf der nördlichen Hemisphäre hat diesen Rekordwert für die CO2-Konzetration ergeben. An sämtlichen Einzelstationen sei ein Wert von über 400 ppm CO2 gemessen worden. Im Frühling sei die Konzentration saisonal bedingt sowieso besonders hoch. Während die Werte im Frühling die 400 ppm-Marke nun bereits überschritten haben, wird dies auf Jahressicht erst 2015 oder 2016 erwartet.
Die CO2 Konzentration in der Atmosphäre erreichte nach Angaben von US-Wissenschaftlern einen historischen Höchstwert. Messungen am 9. Mai 2013 wiesen CO2-Werte im Tagesmittel von über 400 ppm (parts per million) nach. Das teilte das Forschungszentrum Scripps Institution of Oceanography in San Diego im US-Bundesstaat Kalifornien mit. Seit 1958 messen Wissenschaftler die CO2-Konzentration in der Luft von der Station Mauna Loa auf Hawaii. Es ist die älteste Kohlendioxid-Messstation der Welt. Als die Untersuchungen dort begannen, lag der CO2-Wert noch bei 317 ppm.
Origin | Count |
---|---|
Bund | 125 |
Land | 2 |
Type | Count |
---|---|
Ereignis | 6 |
Förderprogramm | 111 |
Text | 8 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 10 |
offen | 117 |
Language | Count |
---|---|
Deutsch | 87 |
Englisch | 64 |
Resource type | Count |
---|---|
Datei | 7 |
Dokument | 4 |
Keine | 76 |
Webseite | 50 |
Topic | Count |
---|---|
Boden | 123 |
Lebewesen & Lebensräume | 124 |
Luft | 124 |
Mensch & Umwelt | 127 |
Wasser | 124 |
Weitere | 126 |