Das Projekt "CLOUD" wird vom Umweltbundesamt gefördert und von Paul Scherrer Institut, Labor für Atmosphärenchemie durchgeführt. Im CLOUD-Projekt (Cosmics Leaving OUtdoor Droplets) soll der Einfluss von galaktischer kosmischer Strahlung auf die Wolken und damit auf das Klima untersucht werden. Zu diesem Zweck wurde am CERN eine spezielle Kammer erstellt, die es erlaubt, unter ultrareinen Bedingungen die hierfür relevanten Prozesse zu untersuchen. Es ist bekannt, dass mit stärkerer galaktischer kosmischer Strahlung eine höhere Ionendichte in der Atmosphäre entsteht. Es soll untersucht werden, inwiefern durch diese erhöhte Ionendichte die Nukleation neuer Aerosolpartikel begünstigt wird. Wenn diese Aerosolpartikel auf die Grösse von etwa 50 bis 100 nm anwachsen, können sie zu so genannten Wolkenkondensationskernen werden und damit die Wolkenbildung beeinflussen. Eine höhere Ionendichte könnte damit in einer Wolke zu mehr und dafür kleineren Wolkentröpfchen führen; eine solche Wolke hätte eine stärker abkühlende Wirkung. Umgekehrt würde die heute eher niedrige Intensität der galaktischen kosmischen Strahlung über diese Mechanismen zu einer Temperaturerhöhung führen. Einzelne Wissenschaftler schreiben die heutige Temperaturerhöhung diesem Effekt der galaktischen kosmischen Strahlung und weniger der Erhöhung der Treibhausgase zu. Das CLOUD-Projekt hat deshalb zum Ziel, diese Hypothese zu überprüfen. Am CERN kann eine erhöhte kosmische Strahlung durch einen Pionenstrahl vom Protonensynchrotron simuliert werden, so dass Ionendichten bis auf eine Höhe von 15 km eingestellt werden können. Weiter können die aus der galaktischen kosmischen Strahlung stammenden Ionen mit einem elektrischen Feld eliminiert werden, bevor sie einen Einfluss auf die Nukleation ausüben können, so dass auch die Nukleation unter vollständig neutralen Bedingungen untersucht werden kann. Das CLOUD-Konsortium verfügt über eine breite Expertise in der Charakterisierung von Gasen, Clustern, Aerosolpartikeln und Wolken und ist deshalb ideal geeignet, diese komplexe Fragestellung anzugehen.
Das Projekt "FIRETRACC/100: Firn-Aufzeichnung von Spurengasen, die fuer die chemischen Aenderungen in der Atmosphaere waehrend der vergangenen 100 Jahre relevant sind" wird vom Umweltbundesamt gefördert und von Universität Bern, Physikalisches Institut, Abteilung für Klima- und Umweltphysik durchgeführt. There have been dramatic changes in the chemistry of the troposphere over the period of rapid industrialisation during this century. There is evidence that tropospheric ozone has doubled in the Northern Hemisphere in this time, and modelling studies have suggested significant changes in the ability of the atmosphere to remove pollutants (the oxidising capacity'). Direct measurements of photooxidant chemistry have, however, only been made in recent years, whilst measurements of the trace gases which drive this chemistry extend back only to the late 1970s. This project aims to use 'firn air' - air trapped in deep polar snow - to examine the record of trace gases in both the Northern and Southern hemispheres over the last 80 to 100 years. Unlike ice cores, firn extraction yields large volumes (tens of litres) of air for analysis. This allows samples to be circulated between laboratories for repeated analysis of different suites of trace gases at ultra-trace levels. This will enable a detailed picture of the atmospheric composition to be built up in air of different ages. Extensive modelling studies will then be conducted to determine the trends of short-lived reactive species such as ozone, hydroxyl radical, peroxide, formaldehyde, and reactive oxides of nitrogen. Hence we will determine the extent of human impact on the trace gas composition and photooxidant chemistry of the troposphere. In summary, the objectives of FIRETRACC/100 are as follows - To determine the global trends of trace gases relevant to tropospheric chemistry over the 20th century. These will include CO, the isotopic composition of CO, hydrocarbons, alkyl nitrates, numerous OH-reactive halocarbons (such as methyl chloride, methyl chloroform, methyl bromide, hydrochlofluorocarbons, etc.), and sulphur gases (COS, CS2, etc.). Trends of longer lived gases will also be determined for dating purposes (CO2, CFCs, SF6, perfluorocarbons, etc.) - Determine the evolution of inter-hemispheric ratios of OH-sensitive species to constrain modelled global OH fields - Examine ratios of parent hydrocarbons to alkyl nitrates to place constraints on NOX fields in models - Elucidate the sources of CO from isotopic studies and use to deconvolute CO/methane coupling in models - Reconstruct the history of ozone, OH and tropospheric oxidising capacity over the past 100 years using full chemistry 2-D models - Determine the influence of 20th century industrialisation on the gas phase composition and chemistry of the lower atmosphere.