API src

Found 532 results.

Related terms

OpenSenseMap - Feinstaubemissionen der Partikelgröße PM10

Stäube sind feste Teilchen der Außenluft, die nicht sofort zu Boden sinken, sondern eine gewisse Zeit in der Atmosphäre verweilen. Nach ihrer Größe werden Staubpartikel in verschiedene Klassen eingeteilt. Als Feinstaub (PM10) bezeichnet man Partikel mit einem aerodynamischen Durchmesser von weniger als 10 Mikrometer (µm). Dargestellt wird der letzte Messwert eines Sensors. Die dargestellten Messwerte wurden auf hohe und niedrige Ausreißer gefiltert. - Hohe Ausreißer sind alles jenseits des 3. Quartils + 1,5 * des Inter-Quartils-Bereichs (IQB) - Niedrige Ausreißer sind alles unterhalb des 1. Quartils - 1,5 * IQB

Sorbensunterstützte Abscheidung von CO2 aus der Umgebungsluft und Industrieemissionen mit niedriger CO2 Konzentration, Teilvorhaben: Integrierte Nachhaltigkeitsbewertung

Umweltbundesamt - Feinstaubemissionen der Partikelgröße PM10

Stäube sind feste Teilchen der Außenluft, die nicht sofort zu Boden sinken, sondern eine gewisse Zeit in der Atmosphäre verweilen. Nach ihrer Größe werden Staubpartikel in verschiedene Klassen eingeteilt. Als Feinstaub (PM10) bezeichnet man Partikel mit einem aerodynamischen Durchmesser von weniger als 10 Mikrometer (µm). Dargestellt wird der Durchschnitt aller Messwerte eines Sensors der letzten Stunde.

LuftDatenInfo - Feinstaubemissionen der Partikelgröße PM2.5

Stäube sind feste Teilchen der Außenluft, die nicht sofort zu Boden sinken, sondern eine gewisse Zeit in der Atmosphäre verweilen. Nach ihrer Größe werden Staubpartikel in verschiedene Klassen eingeteilt. Als Feinstaub (PM10) bezeichnet man Partikel mit einem aerodynamischen Durchmesser von weniger als 10 Mikrometer (µm). Von diesen Partikeln besitzt ein Teil einen aerodynamischen Durchmesser, der kleiner ist als 2,5 µm (PM2,5). Hierzu gehört auch die Fraktion der ultrafeinen Partikel (< 0,1µm). Dargestellt wird der Durchschnitt aller Messwerte eines Sensors der letzten 5 Minuten Die dargestellten Messwerte wurden auf hohe und niedrige Ausreißer gefiltert. - Hohe Ausreißer sind alles jenseits des 3. Quartils + 1,5 * des Inter-Quartils-Bereichs (IQB) - Niedrige Ausreißer sind alles unterhalb des 1. Quartils - 1,5 * IQB

LuftDatenInfo - Feinstaubemissionen der Partikelgröße PM10

Stäube sind feste Teilchen der Außenluft, die nicht sofort zu Boden sinken, sondern eine gewisse Zeit in der Atmosphäre verweilen. Nach ihrer Größe werden Staubpartikel in verschiedene Klassen eingeteilt. Als Feinstaub (PM10) bezeichnet man Partikel mit einem aerodynamischen Durchmesser von weniger als 10 Mikrometer (µm). Dargestellt wird der Durchschnitt aller Messwerte eines Sensors der letzten 5 Minuten Die dargestellten Messwerte wurden auf hohe und niedrige Ausreißer gefiltert. - Hohe Ausreißer sind alles jenseits des 3. Quartils + 1,5 * des Inter-Quartils-Bereichs (IQB) - Niedrige Ausreißer sind alles unterhalb des 1. Quartils - 1,5 * IQB

Gebäude schützen im Notfall vor Strahlung

Gebäude schützen im Notfall vor Strahlung Das Verbleiben im geschlossenen Gebäude kann eine einfache und wirksame Schutzmaßnahme im radiologischen Notfall sein. Fenster und Türen sollten geschlossen bleiben. Lüftungs- und Klimaanlagen sollten ausgeschaltet werden. Dies verhindert, dass radioaktive Stoffe mit der Luft in die Wohnung gelangen und eingeatmet werden. Katastrophenschutzbehörden der Bundesländer können als frühe Schutzmaßnahme den Aufenthalt in Gebäuden anordnen. In einem radiologischen Notfall , zum Beispiel nach einem Unfall in einem Kernkraftwerk oder einer Nuklearwaffen-Explosion, können verschiedene radioaktive Stoffe in die Atmosphäre gelangen. Dort können sie sich, angeheftet an Staubpartikel oder gasförmig, als radioaktive Wolke verbreiten . Diese radioaktiven Luftmassen können gesundheitliche Folgen haben, wenn Menschen sich der Strahlung im Freien aussetzen. Oder wenn sie radioaktive Staubpartikel oder Gase in den Körper aufnehmen - mit der Atmung oder über die Nahrung. Mit dem Aufenthalt in geschlossenen Innenräumen im Haus kann das Einatmen von radioaktiven Partikeln reduziert werden, zusätzlich kann die einwirkende Strahlung aus den radioaktiven Luftmassen stark verringert werden. Als Aufenthaltsorte kommen Innen- und Kellerräume von Wohnhäusern und Arbeitsstätten in Betracht. Gleiches gilt für Innen- und Schutzräume in umliegenden Gebäuden, Läden und Geschäftsräumen. Besonders hohe Schutzwirkung bieten Kellerräume im Untergrund. Warum hilft das Drinnenbleiben? In einem radiologischen Notfall können unterschiedliche radioaktive Stoffe in die Umwelt gelangen . Ein Haus schirmt die Strahlungsenergie dieser radioaktiven Stoffe deutlich ab. Gebäude bieten Schutz vor Strahlung in einem radiologischen Notfall Alphastrahlung und Betastrahlung werden zu 100 % abgeschirmt. Gammastrahlung wird – je nach Bauart des Hauses und nach dem gewählten Aufenthaltsort im Haus – um bis zu 85 % abgehalten. Besonders hoch ist die Abschirmung im Keller. Hier können mehr als 85 % der Strahlung abgehalten werden. Wände aus Beton schirmen Strahlung besser ab als Holzwände. So wird zum Beispiel die Gammastrahlung von radioaktivem Jod durch 6 Zentimeter Beton um etwa 75 % reduziert. Je besser die Abschirmung , desto weniger Strahlung sind die betroffenen Menschen ausgesetzt – und desto geringere gesundheitliche Folgen sind zu erwarten. Auch im Fall einer Nuklearwaffen-Explosion ist der Aufenthalt in einem Gebäude in den ersten 24 bis 48 Stunden eine empfohlene Maßnahme. Bei einer Nuklearwaffen-Explosion entstehen viele kurzlebige Radionuklide , die sehr schnell zerfallen. Durch den schnellen Zerfall nimmt die Strahlenbelastung innerhalb von 48 Stunden etwa um den Faktor 100 ab. Wann sollte ich in einem Gebäude bleiben? Die Katastrophenschutzbehörden der Bundesländer können "Aufenthalt in Gebäuden" als frühe Schutzmaßnahme (früher sagte man Katastrophenschutzmaßnahme) anordnen. Sie legen auch die Gebiete fest, in denen diese Schutzmaßnahme angeordnet wird. Die Informationen dazu laufen dann über Medien oder kommen von den Behörden direkt. Und wie entscheiden Verantwortliche, wann eine solche Maßnahme nötig ist? Dafür gibt es sogenannte Notfall-Dosiswerte . Mit diesen Werten ist für das deutsche Staatsgebiet festgelegt, ab welcher zu erwartenden Strahlenbelastung für Menschen im Notfall aus radiologischer Sicht der Aufenthalt in einem Gebäude empfohlen wird. Was ist zu beachten? Verschiedene Orte bieten unterschiedlich guten Schutz. Wenn Sie aufgefordert werden, drinnen zu bleiben, bringen Sie so viel Material (Decken, Wände und in Kellerräumen Erdreich) wie möglich zwischen sich selbst und die radioaktiven Stoffe im Freien. Sollte ein (mehrstöckiges) Haus oder ein Keller innerhalb weniger Minuten sicher erreichbar sein, begeben Sie sich umgehend dort hin. Die sichersten Gebäude bestehen aus Ziegelstein- oder Betonwänden. Fahrzeuge und Wohnmobile bieten keinen ausreichenden Schutz. Trotzdem sind sie immer noch besser als ein Aufenthalt im Freien. Im Gebäude: Außenluft abschirmen, möglichst weit weg von Außenwänden aufhalten Suchen Sie, wenn möglich, innenliegende Räume und Keller ohne Fenster auf. Hat der sicherste Raum im Gebäude doch Fenster, halten Sie sich möglichst weit weg von den Fenstern auf. Im Gebäude müssen Türen und Fenster geschlossen werden, damit keine radioaktiven Teilchen mit der Luft ins Haus gelangen können. Einen zusätzlichen Schutz bieten abgedichtete Fenster und Außentüren – je weniger Luft von draußen ins Innere des Gebäudes gelangt, desto besser. Klima- und Lüftungsanlagen müssen, wenn es geht, ausgeschaltet werden, damit möglichst wenig radioaktive Partikel mit der Luft ins Haus gelangen können. Radioaktive Kontaminationen vermeiden: Waschen und Umziehen sind wichtig Lebensmittel, Getränke und Medikamente, die sich bereits in Lagern bzw. Geschäften oder in Ihrem Schutzraum befinden, können sicher verwendet werden. Falls es keine anderen behördlichen Empfehlungen gibt, kann auch Leitungswasser bedenkenlos genutzt werden. Ablegen von kontaminierter Oberbekleidung vor dem Betreten eines Gebäudes. Sollte Ihre (Ober-)Bekleidung, zum Beispiel Ihre Jacke, Hose oder Mütze, kontaminiert sein, legen Sie diese idealerweise vor Betreten des Gebäudes ab. Verstauen Sie diese Sachen in Plastiktüten außerhalb des Hauses. Waschen Sie alle ungeschützten Hautstellen unter fließendem Wasser. Achten Sie darauf, dass kein Wasser in den Mund, in die Nase und in die Augen läuft, damit radioaktive Stoffe nicht in den Körper eindringen können. Die zusätzliche Schutzwirkung des Tragens einer FFP 3-Atemschutzmasken im Haus kann vernachlässigt werden. Die Masken schützen nur vor radioaktiven Staubpartikeln, die bei geschlossenen Fenstern nur reduziert in die Wohnung gelangen können. Gut informiert bleiben Informationskanäle im Notfall Informieren Sie sich über Radio (Sender mit Verkehrsfunk), Fernsehen oder im Internet auf den offiziellen Behördenseiten. Folgen Sie den Anweisungen der Behörden und Einsatzkräfte. Nutzen Sie im Falle eines Stromausfalls zum Beispiel batteriebetriebene Radiogeräte für aktuelle Informationen. Wann darf ich wieder raus? Was habe ich dann zu beachten? Die Gefahr , die von radioaktivem Niederschlag, dem sogenanntem Fallout , ausgeht, nimmt in der Regel mit der Zeit ab. Wie schnell genau das passiert, ist abhängig von den Halbwertszeiten der radioaktiven Stoffe. In manchen Szenarien kann die Gefahr sogar sehr schnell und stark sinken. Wird von den Katastrophenschutzbehörden der Bundesländer die frühe Schutzmaßnahme „Aufenthalt in Gebäuden“ empfohlen, sollten Sie und Ihre Familie während des gesamten Zeitraums, für den diese Empfehlung gilt, das Haus nicht verlassen. Auch Ihre Haustiere sollten Sie in dieser Zeit nicht ausführen. Bleiben Sie an dem Ort, der Sie am besten schützt etwa im Keller oder in innenliegenden Räumen, sofern Sie nicht von einer unmittelbaren Gefahr bedroht sind (zum Beispiel Feuer, Gasleck, Gebäudeeinsturz oder ernsthafte Verletzung). Das heißt, Sie bleiben am besten im Gebäude, bis Sie andere Anweisungen erhalten: Die Behörden informieren darüber, wenn die Gebäude wieder verlassen werden können und ob und was dann beachtet werden muss. Von eigenständiger Evakuierung wird strengstens abgeraten, bis die gefährdeten Fallout -Gebiete identifiziert und sichere Routen für eine mögliche Evakuierung ausgewiesen wurden. Was tun, wenn ich doch das Haus verlassen muss oder von draußen komme? Wenn Sie das Gebäude doch verlassen müssen, tragen Sie am besten Schutzkleidung, zum Beispiel abwaschbare Kleidung und Gummistiefel. Falls vorhanden, tragen Sie außerdem eine FFP2- oder FFP3-Maske, das gilt auch im Falle einer Nuklearwaffen-Explosion. Damit werden radioaktive Partikel aus der Außenluft gefiltert und die Aufnahme von Radionukliden mit der Luft kann um mehr als das Zehnfache vermindert werden. Falls keine Maske vorhanden ist, können Sie sich auch ein Taschentuch vor Mund und Nase halten und dadurch atmen. Wenn Sie von draußen kommen und ein Gebäude betreten wollen, ziehen Sie Oberbekleidung und Schuhe beim Betreten des Gebäudes aus. Verpacken Sie die Kleidung und die Schuhe in einen Plastikbeutel und lagern Sie diesen verschlossen außerhalb der Wohnung. Damit verhindern Sie, dass radioaktive Stoffe ins Gebäude getragen werden. Reinigen Sie im Haus zunächst gründlich Hände und Kopf sowie alle weiteren unbedeckten Körperstellen, die mit radioaktiven Stoffen in Kontakt gekommen sein könnten, unter fließendem Wasser.  Erst danach sollten Sie gründlich duschen. Achten Sie dabei darauf, dass kein Wasser in den Mund, die Nase oder die Augen gelangt, damit radioaktive Stoffe nicht aus Versehen in den Körper kommen können. Potenziell kontaminierte Haustiere sollten in einem separaten Raum, getrennt von schutzsuchenden Personen, ausgebürstet und möglichst ebenfalls gewaschen werden. Dabei sollte - wenn verfügbar - eine FFP2- oder FFP3-Maske getragen werden. Wie kann ich mich auf die Schutzmaßnahme "Aufenthalt im Haus" vorbereiten? Identifizieren Sie bereits jetzt potenzielle Schutzräume – daheim, am Arbeitsplatz und in der Schule sowie auf dem Weg zur Arbeit. So wissen Sie im Ernstfall direkt, wohin Sie und Ihre Familie gehen können. In Betracht kommen können die Kellerräume Ihres Wohnhauses und Ihrer Arbeitsstätte, ebenso Schutzräume in umliegenden Gebäuden, Läden und Geschäftsräumen, insbesondere wenn sich diese im Untergrund befinden. Fahrzeuge und Wohnmobile bieten keinen ausreichenden Schutz. Das Bundesamt für Bevölkerungsschutz und Katastrophenhilfe ( BBK ) informiert ausführlich darüber, welche Vorräte man für den Fall eines radiologischen Notfalls sowie für andere Katastrophenfälle am besten zuhause vorrätig haben sollte. Verständigen Sie sich mit Ihrer Familie und Freunden über Ihre Vorgehensweise im Fall eines radiologischen Notfalls. So wissen alle Bescheid. Befestigen Sie Namensschilder an der Kleidung kleinerer Kinder und anderer schutzbedürftiger Personen, um sie im Fall einer Trennung schneller zu finden. Das BBK empfiehlt Brustbeutel oder eine SOS-Kapsel mit Namen, Geburtsdatum und Anschrift. SOS-Kapseln erhalten Sie in Kaufhäusern, Apotheken und Drogerien. Für das Szenario einer Nuklearwaffen-Explosion wäre es zusätzlich hilfreich, im Schutzraum einen Erste-Hilfe-Kasten mit Ausstattung und Medikamenten zur Behandlung von Verletzungen und Verbrennungen sowie mit allgemeiner und täglich benötigter Medizin vorzuhalten. Es bietet sich zudem an, bereits im Voraus Erste-Hilfe-Maßnahmen für mechanische Traumata und Verbrennungen zu erlernen. Stand: 26.11.2025

Radon in Sachsen-Anhalt Was ist Radon? Radon in der Umwelt Radon in Gebäuden Auswirkungen des Radons auf den Menschen Festlegung von Gebieten nach § 121 Strahlenschutzgesetz Radonfachperson - Eintrag in die Liste ausgebildeter Radonfachleute FAQ - Häufig gestellte Fragen im Zusammenhang mit Radonvorsorgegebieten Messpflicht für Arbeitsplatzverantwortliche in Radonvorsorgegebieten Maßnahmen zum Schutz vor Radon Radon-Schutzmaßnahmen bei Neubauten Erfahrungen aus Sachsen-Anhalt

Radon-222 ist ein natürliches radioaktives Edelgas, welches durch den Zerfall von Uran-238 entsteht. Uran befindet sich in natürlicher Form in Böden und Gesteinen, aus denen sich Radon-222 lösen kann. Radon ist farblos, man kann es nicht riechen und schmecken. Es ist nicht entflammbar und ist nicht giftig, jedoch radioaktiv. Als Gas ist es ausgesprochen mobil, kann sich vom Entstehungsort aus in den Boden- und Gesteinsschichten verteilen und in die freie Atmosphäre austreten. Über undichte Fundamente gelangt es in Gebäude und kann sich dort anreichern. Ist eine Person länger oder häufig einer erhöhten Radon-222-Konzentration ausgesetzt, so steigert dies das Lungenkrebsrisiko. Bürger, die in Regionen mit erhöhten Radonkonzentrationen leben, können sich durch geeignete Verhaltens- und Vorsorgemaßnahmen vor gesundheitlichen Risiken schützen. In der Erdkruste sind radioaktive Stoffe, wie Uran, Thorium und das Mutternuklid des Radons, das Radium, enthalten. Geologische Prozesse, die in der Folge entstandenen geologischen Lagerungsbedingungen und die Eigenschaften der Radionuklide bestimmen die Konzentration der natürlichen radioaktiven Stoffe in den Gesteinen und im Boden. Im Norden und Osten von Sachsen-Anhalt wurden nur geringe Radonkonzentrationen in der Bodenluft gemessen, während die Messwerte vor allem im Südwesten erhöht sind. Dies liegt an den geologischen Gegebenheiten im Bereich des Harzes. Das Bundesamt für Strahlenschutz stellt in seinem Geoportal eine interaktive Karte von Deutschland zur Verfügung. Dort ist es möglich, die Radon-222-Konzentrationen in der Bodenluft einzublenden: https://www.imis.bfs.de/geoportal/ Tritt Radon aus dem Boden aus, wird es entweder im Freien in die Luft oder aber in Gebäuden freigesetzt. Während die Radonkonzentration im Freien durch Vermischen mit der Umgebungsluft nur wenige zehn Becquerel (Bq) pro Kubikmeter (m³) beträgt, ist sie in Wohnräumen in Deutschland im Durchschnitt drei- bis viermal höher, da das Radon unverdünnt aus dem Untergrund in das Gebäude eindringt. Es ist somit bestimmend für die durch das Radon verursachte Strahlenbelastung der Bewohner. Ausgehend von der Radonkonzentration in der Bodenluft liegt das Verhältnis von Radon in der Raumluft zu Radon in der Bodenluft bei circa 0,1 bis 0,5 Prozent, das heißt bei einer Aktivitätskonzentration in der Bodenluft von z. B. 100 kBq/m³ könnten Werte im Bereich von 100 bis 500 Bq/m³ in der Raumluft des Gebäudes auftreten. Das Radon gelangt durch undichte Stellen im Fundament oder in den Kellerräumen in das Haus und breitet sich dort über Treppenaufgänge, Kabelkanäle und Versorgungsschächte aus. Die Radonkonzentration in Gebäuden wird durch gebäudespezifische Einflussfaktoren bestimmt: das Radonangebot im Boden und seine Beschaffenheit, den Zustand des Gebäudes, einen möglichen Kamineffekt im Gebäude, das Lüftungsverhalten der Gebäudenutzer. Eine Prognose der Radon-222-Konzentration in der Raumluft zeigt diese Karte des Bundesamtes für Strahlenschutz: https://www.bfs.de/DE/themen/ion/umwelt/radon/karten/innenraeume.html Radon-222 wird beim Atmen aufgenommen und zum größten Teil wieder ausgeatmet. Die ebenfalls radioaktiven Zerfallsprodukte Polonium, Blei oder Wismut werden jedoch in den Atmungsorganen abgelagert. Untersuchungen bei größeren Bevölkerungsgruppen lassen darauf schließen, dass ein Zusammenhang zwischen der Radon-Exposition und dem Lungenkrebsrisiko besteht. Allerdings dürfen für eine Bewertung der Gefährdung andere Faktoren wie Rauchen, Feinstaub und weitere Schadstoffe nicht außer Acht gelassen werden. So zeigen Studien, dass das auf Radon basierende Lungenkrebsrisiko durch gleichzeitiges Rauchen erhöht wird - die meisten radonbedingten Lungenkrebsfälle treten bei Rauchern auf. Somit wird die Frage zur Festlegung der Höhe eines Referenzwerts der Radonkonzentration in Wohnräumen in Fachkreisen unterschiedlich bewertet. Der in Deutschland gesetzlich festgelegte Referenzwert liegt bei 300 Becquerel pro Kubikmeter, doch auch darunter ist eine weitere Verringerung sinnvoll. Das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt (MWU) ist durch das Strahlenschutzgesetz beauftragt, sogenannte Radonvorsorgegebiete in Sachsen-Anhalt festzulegen. Radonvorsorgegebiete sind Gebiete nach § 121 Absatz 1 des Strahlenschutzgesetzes. Für diese Gebiete wird erwartet, dass die über ein Jahr gemittelte Radon-222-Aktivitätskonzentration in der Luft von Aufenthaltsräumen oder Arbeitsplätzen den gesetzlichen Referenzwert überschreitet. Der Referenzwert liegt für Aufenthaltsräume und Räume mit Arbeitsplätzen bei 300 Bq/m³. Das damalige Umweltministerium legte zum 30. Dezember 2020 die folgenden Gemeinden als Gebiete nach § 121 Strahlenschutzgesetz (Radonvorsorgegebiete) fest: Im Landkreis Mansfeld-Südharz : Allstedt Arnstein Goldene Aue Hettstedt Lutherstadt Eisleben Mansfeld Mansfelder Grund – Helbra Sangerhausen Südharz Im Landkreis Harz : Falkenstein Harzgerode Ilsenburg Oberharz am Brocken Thale Wernigerode Die Festlegung der Radonvorsorgegebiete in Sachsen-Anhalt basiert auf: der wissenschaftlichen Auswertung geologischer Daten, der Prognosekarte des geogenen Radonpotenzials 2020 des Bundesamtes für Strahlenschutz, Messwerten der Radon-222-Aktivitätskonzentration in der Bodenluft, Messungen der Radon-222-Aktivitätskonzentration in der Luft von Innenräumen und auf der Betrachtung weiterer örtlicher Faktoren. Die zuständige Behörde für die Überwachung der Einhaltung der aus der Festlegung folgenden Pflichten ist das Landesamt für Verbraucherschutz des Landes Sachsen-Anhalt. Geogenes Radonpotenzia l Das Bundesamt für Strahlenschutz hat eine Karte von Deutschland erstellt, welche das sogenannte „geogene Radonpotenzial“ in einem 10 x 10 km²-Raster abbildet. Diese Karte stellt das Ergebnis von Modellrechnungen dar, welche unter anderem geologische Daten, Daten zur Bodenpermeabilität, Messdaten in der Boden- und Raumluft, sowie Gebäudeeigenschaften einbeziehen. Diese Prognose betrachtet alle bis zum 30. Juni 2020 eingegangenen, mittels aktiver Messtechnik gewonnenen Bodenluftmessdaten. Die Methodik dieser Prognose entspricht annähernd einer älteren Modellierung des Bundesamtes für Strahlenschutz, die in einem Bericht von 2019 erläutert wird. Die aktuelle Prognose des Radonpotenzials nutzt jedoch eine abweichende Interpolationsmethode und die dominierende Geologie von jedem Rasterfeld als Prädiktor. Für die Prognose wurde die Modellierung mit Innenraummessungen verknüpft. Bei Fach-, Berufsverbänden oder ähnlichen Einrichtungen zu Radonfachleuten Ausgebildete können sich in die Liste ausgebildeter Radonfachleute eintragen lassen. Der Antrag ist unter dem Betreff "Radonfachleute" zu richten an: strahlenschutz(at)mwu.sachsen-anhalt.de Mit Ihrem Antrag auf Aufnahme in die Liste geben Sie gemäß Artikel 6 Abs. 1 Buchstabe a Datenschutz-Grundverordnung Ihre Einwilligung, dass Ihr Name, Ihre E-Mail-Adresse und Ihre Telefonnummer (personenbezogene Daten) in der beim Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt (MWU) geführten Liste gemeinsam mit weiteren Radonfachleuten aufgenommen und diese Liste im Internet auf der Homepage des MWU veröffentlicht wird. Datenschutzhinweise Sie sind nicht zur oben genannten Einwilligung verpflichtet. Ohne Ihre Einwilligung können Ihre personenbezogenen Daten nicht in die Liste aufgenommen und im Internet veröffentlicht werden. Zudem können Sie Ihre Einwilligung jederzeit widerrufen. Durch den Widerruf der Einwilligung wird die Rechtmäßigkeit der aufgrund der Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Die personenbezogenen Daten werden solange gespeichert, wie sie für die Verarbeitungszwecke, für die sie erhoben wurden, notwendig sind, längstens jedoch 30 Jahre. Die personenbezogenen Daten werden unverzüglich gelöscht, soweit Sie Ihre Einwilligung widerrufen. Weiterhin steht Ihnen gegenüber dem Verantwortlichen ein Recht auf Auskunft über die Sie betreffenden personenbezogenen Daten sowie auf Berichtigung oder Löschung oder auf Einschränkung der Verarbeitung sowie das Recht auf Datenübertragbarkeit zu. Verantwortlicher im Sinne der Datenschutz-Grundverordnung ist das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt, Leipziger Straße 58, 39112 Magdeburg; der behördliche Datenschutzbeauftragte des Ministeriums ist erreichbar unter der E-Mail-Adresse Datenschutz(at)mwu.sachsen-anhalt.de. Zudem besteht für Sie ein Beschwerderecht bei einer Aufsichtsbehörde in einem der EU-Mitgliedstaaten. In der Bundesrepublik Deutschland sind sowohl die Bundesbeauftragte für den Datenschutz und die Informationsfreiheit (BfDI) als auch die Datenschutzbeauftragten der Länder Aufsichtsbehörden im Sinne der Datenschutz-Grundverordnung. Aufsichtsbehörde im Land Sachsen-Anhalt ist der Landesbeauftragte für den Datenschutz Sachsen-Anhalt, Leiterstraße 9, 39104 Magdeburg. Mit der Bekanntgabe der Radonvorsorgegebiete in Sachsen-Anhalt wurden viele Fragen an das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt (MWU) gerichtet. Auf einer eigens eingerichteten FAQ-Seite sind alle Fragen und Antworten zum Thema Festlegung von Radonvorsorgegebieten übersichtlich zusammengestellt. zum FAQ -Festlegung von Radonvorsorgegebieten Durch die Festlegung besteht seit dem 31. Dezember 2020 in den Radonvorsorgegebieten eine Messpflicht für Arbeitsplatzverantwortliche nach § 127 Strahlenschutzgesetz. Innerhalb von 18 Monaten sind an allen Arbeitsplätzen im Keller und im Erdgeschoss Messungen der Radon-222-Aktivitätskonzentration in der Raumluft durchzuführen. Die Messungen sollen an repräsentativen Messorten über eine Dauer von 12 Monaten erfolgen. Mit der Messung der Radonkonzentration muss ein vom Bundesamt für Strahlenschutz anerkannter Anbieter beauftragt werden. Diese Anbieter werden in einer regelmäßig aktualisierten Liste bekannt gegeben: https://www.bfs.de/DE/themen/ion/umwelt/radon/schutz/messen.html Es ist empfehlenswert, bei mehreren Anbietern ein Angebot für die Messungen einzuholen. Ergibt eine Messung eine Überschreitung des Referenzwertes, sind gemäß § 128 Strahlenschutzgesetz durch den Arbeitsplatzverantwortlichen unverzüglich geeignete Maßnahmen zur Reduzierung der Radon-222-Aktivitätskonzentration in der Raumluft zu treffen.  Der Erfolg der getroffenen Maßnahmen ist durch Messungen zu überprüfen. Zuständig für den Schutz vor Radon an Arbeitsplätzen in Innenräumen ist das Landesamt für Verbraucherschutz . Abhängig von der Überschreitung des Referenzwertes der Radon-222-Aktivitätskonzentration in der Raumluft sind organisatorische, technische oder bauliche Maßnahmen zur Senkung der Radon-222-Konzentration durchzuführen. Dies kann beispielsweise die regelmäßige Lüftung der betroffenen Räume, die Installation einer automatischen Lüftungsanlage oder die Abdichtung von Türen, Leitungen oder anderen Zugängen zwischen Aufenthaltsräumen und Räumen, in die Radon über das Fundament eindringen kann (z.B. Kellerräume), sein. Sollten sich nach Ergreifen dieser einfacheren Maßnahmen weiterhin erhöhte Messwerte (> 300 Bq/m³) ergeben, sollte zur weiteren Beratung ein fachkundiger Dienstleister hinzugezogen werden. Dieser hilft beim Auffinden versteckter Risse oder undichter Stellen und berät zu weiterführenden Maßnahmen, wie einer Versiegelung oder der Installation von Absaugvorrichtungen. Auch in Gebäuden, welche nicht in Radonvorsorgegebieten liegen, kann zum Beispiel aufgrund von Schäden im Gemäuer oder mangelnder Durchlüftung eine erhöhte Radon-222-Konzentration in der Raumluft auftreten. Obwohl dort keine gesetzlichen Pflichten für Arbeitsplatzverantwortliche bestehen, sollten dennoch Maßnahmen zum Gesundheitsschutz getroffen werden. Weiterführende Informationen über die Maßnahmen zum Schutz vor Radon bietet das Bundesamt für Strahlenschutz: https://www.bfs.de/DE/themen/ion/umwelt/radon/schutz/massnahmen.html Nach § 123 Strahlenschutzgesetz sind bei der Errichtung eines Gebäudes mit Aufenthaltsräumen oder Arbeitsplätzen geeignete Maßnahmen zu treffen, um den Zutritt von Radon aus dem Baugrund zu verhindern bzw. erheblich zu erschweren. Diese Pflicht gilt für Neu- oder Umbauten von Arbeitsplatzverantwortlichen und privaten Bauherren. Im gesamten Landesgebiet von Sachsen-Anhalt sind zum Schutz vor Radon die nach den allgemein anerkannten Regeln der Technik erforderlichen Maßnahmen zum Feuchteschutz einzuhalten. In den festgelegten Radonvorsorgegebieten ist gemäß § 154 der Strahlenschutzverordnung darüber hinaus mindestens eine der folgenden Maßnahmen durchzuführen: Verringerung der Radon-222-Aktivitätskonzentration unter dem Gebäude Gezielte Beeinflussung der Luftdruckdifferenz zwischen Gebäudeinnerem und der Bodenluft Begrenzung von Rissbildungen in Wänden oder Böden und Auswahl diffusionshemmender Betonsorten Absaugung von Radon Einsatz diffusionshemmender, konvektionsdicht verarbeiteter Materialien oder Konstruktionen. In den Jahren 2001 und 2002 hat das Bundesamt für Strahlenschutz insgesamt 1.670 Langzeitmessungen in bestehenden Wohnungen und Gebäuden in auffälligen Gebieten in Sachsen-Anhalt durchgeführt, wobei eine Weitergabe der bewerteten Ergebnisse an die Betroffenen erfolgte. Auch das Land Sachsen-Anhalt hat Messungen durchgeführt. In öffentlichen Räumlichkeiten mit Radonkonzentrationen von zum Teil über 400 Bq/m³ konnte bereits durch einfache Maßnahmen eine ausreichende Verringerung der Radonkonzentration erreicht werden.

Prozesse in der Umwelt

Es gibt wenige grundlegende Prozesse in der Umwelt, die zur Exposition von Menschen mit radioaktiven Stoffen führen. Ein Grundverständnis dieser Prozesse hilft dabei, sich richtig zu verhalten. Schadstoffe können aus einer Vielzahl von verschiedenen Quellen in die Atmosphäre freigesetzt werden. Diese Emission kann durch normale natürliche oder zivilisatorische Prozesse (z.B. Waldbrände, Vulkanausbrüche, Hausfeuerung, Industrie) verursacht werden oder durch Unfälle bedingt sein (z.B. in Industrieanlagen oder (Kern-)Kraftwerken). Nach der Emission wird die „Schadstofffahne“ mit dem Wind transportiert. Durch die Turbulenzen der Luft findet eine Durchmischung mit der Umgebungsluft statt und die Schadstofffahne fächert sich mit zunehmender Entfernung immer stärker auf. Dadurch nimmt die Schadstoffkonzentration ab. Die Belastung der Luft an einem bestimmten Ort mit Schadstoffen hängt daher von der freigesetzten Schadstoffmenge, den meteorologischen Bedingungen und der Entfernung von der Quelle ab. Jeder Schadstoff besitzt physikalisch-chemische Eigenschaften, z. B. Wasserlöslichkeit oder Flüchtigkeit. Diese beeinflussen sein Umweltverhalten sehr stark. Zum Beispiel können Substanzen, die in der Atmosphäre gasförmig vorliegen, über weite Entfernungen transportiert werden, wenn sie weder lichtempfindlich noch leicht wasserlöslich sind. Sie werden dann in der Luft nämlich weder abgebaut noch durch Regen ausgewaschen. Durch chemische Umwandlungen verringert sich die Konzentration des ursprünglichen Schadstoffs. Dabei entstehen neue Substanzen, und diese können andere physikalisch-chemische Eigenschaften als der Ausgangsstoff haben. Ein gutes Beispiel dafür ist Ozon. Es wird bei Sonneneinstrahlung durch Reaktionen von „Vorläufersubstanzen“ gebildet, in diesem Fall Sauerstoff, Stickstoff und flüchtige Kohlenwasserstoffe. Schadstoffe können trocken oder nass aus der Luft entfernt werden. Große Partikel haben eine hohe Sedimentationsgeschwindigkeit und daher nur kurze Verweilzeiten in der Atmosphäre. Kleine Partikel und die mit ihnen assoziierten Schadstoffe werden dagegen durch Kontakt mit Oberflächen aus der Atmosphäre entfernt und gasförmige Substanzen werden durch physikalisch-chemische Wechselwirkungen auf Oberflächen abgeschieden. Darüber hinaus können Schadstoffe auch durch Niederschläge (Regen, Nebel, Schnee) aus der Luft ausgewaschen werden, wenn sie selbst wasserlöslich sind oder an Partikel gebunden vorliegen. Diese Prozesse des Eintrags von Stoffen aus der Luft auf die Erdoberfläche werden trockene bzw. nasse Deposition genannt. Sie führen dazu, dass die Schadstoffe in natürliche Ökosysteme und landwirtschaftliche Nutzflächen gelangen und auf Oberflächen aller Art abgelagert werden. Damit kann es auch zu einer Aufnahme dieser Schadstoffe durch Mensch und Tier kommen. Die beschriebenen Grundmechanismen gelten für alle Schadstoffe, die in die Luft freigesetzt werden. Sie sind die Ursache dafür, dass nach dem Unfall in Tschernobyl im Jahr 1986 die Radioaktivität so weiträumig verbreitet wurde. Und sie erklären auch, warum sich chlororganische Substanzen wie Polychlorierte Biphenyle (PCB) und Dioxine sogar in der Antarktis nachweisen lassen. Radioaktivität ist allgegenwärtig und findet sich damit auch in unseren Nahrungsmitteln. Doch woher stammen die radioaktiven Stoffe, und wie gelangen sie in unser Essen? Dieser Film gibt Antworten hierauf. Radioaktive Stoffe in der Luft oder auf Oberflächen können dazu führen, dass Menschen mit ionisierender Strahlung belastet werden. Generell unterscheidet man zwei Wege, auf denen dies erfolgen kann: Äußere und innere Strahlenbelastung. Bei der äußeren Strahlenbelastung wirken die von radioaktiven Stoffen in Materialien, in der Luft oder auf Oberflächen (Boden, Pflanzen, Gebäude, …) abgegebene ionisierende Strahlung von außen auf den menschlichen Körper ein. Eine innere Strahlenbelastung erfolgt nach der Aufnahme von radioaktiven Substanzen über die Atemluft, durch kontaminierte Nahrungsmittel oder kontaminiertes Wasser. Weitere Informationen dazu, wie man sich persönlich schützen kann, finden Sie auf der Seite Schutzmaßnahmen .

Geräuschbelastung von Luft-Wärmepumpen vorab durch sorgfältige Planung reduzieren

Wer heute in Sachsen-Anhalt baut, setzt beim Heizen zumeist auf eine Wärmepumpe. Klimafreundliche Heiztechnik war zuletzt in knapp 70 Prozent aller genehmigten Bauvorhaben für Wohnungen vorgesehen. Kritiker der Wärmepumpentechnik führen neben Bedenken zu Praxistauglichkeit und Wirtschaftlichkeit bei Altbauten häufig auch eine hohe Geräuschbelastung an. „Diese lässt sich aber mit sorgfältiger Planung zur Aufstellung der Anlagen deutlich reduzieren“, betont Energieminister Prof. Dr. Armin Willingmann mit Blick auf den heutigen „Internationalen Tag gegen Lärm“. Um Häuslebauern eine Orientierung zur optimalen Platzierung einer Luft-Wärmepumpe und damit zum bestmöglichen Lärmschutz zu geben, hat eine Arbeitsgemeinschaft von Bund und Ländern einen entsprechenden Leitfaden erarbeitet, der fortlaufend aktualisiert wird. Praxisnahe Unterstützung zur Lärm-Vorsorge bietet zudem der interaktive Online-Assistent des Landesamts für Umweltschutz. Damit lässt sich ermitteln, welchen Abstand eine Luft-Wärmepumpe zur nächstgelegenen Wohnbebauung haben muss oder welchen Schallpegel eine zu errichtende Anlage maximal haben darf. Willingmann betonte: „Das Image der Wärmepumpe hat in den vergangenen Jahren gelitten. Und das völlig zu Unrecht! Aktuell ist sie für die allermeisten Wohngebäude die beste Lösung, um klimafreundlich zu heizen. Und sie wird mindestens mittelfristig auch die günstigste. Wenn 2027 der Gebäudesektor in den europäischen Emissionshandel integriert wird, dürften die Preise für fossile Energieträger wie Öl und Gas weiter deutlich steigen. Deshalb ist es sinnvoll, die Umrüstung auf klimafreundliche Heiztechnik wie eine Luft-Wärmepumpe anzugehen. Damit hierbei keine Lärmkonflikte mit Nachbarn entstehen, bieten wir umfangreiche Unterstützung. In jedem Fall sollte die Geräuschentwicklung der Geräte Berücksichtigung finden, bevor sie errichtet und in Betrieb genommen werden. Luft-Wärmepumpen nutzen die Wärme der Umgebungsluft als Energiequelle und ermöglichen eine klimafreundliche, effiziente Beheizung von Wohn- und Gewerbegebäuden. Betreibt man sie zusätzlich mit komplett regenerativem Strom aus Wind- und Solarenergieanlagen, tragen sie noch stärker dazu bei, dass weniger fossile Brennstoffe verwendet werden und so der CO2-Ausstoß sinkt. Dadurch sind sie ein wichtiger Baustein zur Erreichung der Klimaschutzziele. Der „Leitfaden für die Verbesserung des Schutzes gegen Lärm beim Betrieb von stationären Geräten in Gebieten, die dem Wohnen dienen“ ist hier verfügbar: https://lsaurl.de/WEJMFG. Der Online-Assistent des Landesamtes für Umweltschutz gibt es hier: http://lwpapp.webyte.de/. Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X

Untersuchungen mit oben offenen Experimentierkammern zur Auswirkung bestimmter Luftschadstoffe auf Gesundheitszustand und Wachtstum von Forstpflanzen

Seit Beginn der 80er Jahre wird in der Ursachenforschung der Waldschaeden bestimmten Luftschadstoffen eine entscheidende Rolle beigemessen. Aus diesem Grund wurde von der Forstlichen Versuchs- und Forschungsanstalt Baden-Wuerttemberg ein Pilotprojekt begonnen. Ziel dieses Vorprojektes war die Entwicklung und Erprobung einer Grosskammer zur Untersuchung von Filterwirkung, Wintertauglichkeit und Kammerklima. Solche 'oben offenen Experimentierkammern' bieten die Moeglichkeit, Luftschadstoffe der Umgebungsluft auszuschliessen. Aus den Kontrollen mit den jeweiligen Freiluftbaeumen lassen sich dann Rueckschluesse auf die Auswirkungen der verschiedenen Schadstoffe ziehen. Dieses Pilotprojekt wurde im Muenstertal im Suedschwarzwald in 850 m ue NN durchgefuehrt. Die praktische Erprobung waehrend zweier Betriebsjahre zeigte einen weitgehend stoerungsfreien Kammerbetrieb. Die hoelzerne Konstruktion und die Folienbespannung widerstanden allen Belastungen durch Wind und Schnee. Lueftungs- und Filterungssystem arbeiteten befriedigend. Im Gegensatz zum technischen Kammerbetrieb bleiben die qualitativen Kammerbedingungen hinter den Erfordernissen zurueck. Eine wesentliche Abweichung von den Freilandbedingungen stellten die fehlenden Nebel- und Tauereignisse dar. Aus immissionsoekologischer Sicht entfielen hierdurch Depositionen, die fuer das aktuelle Schadensphaenomen der montanen Nadelvergilbung von besonderer Bedeutung sein koennten. Die nahezu lueckenlosen Messreihen der Klimawerte belegten ferner, dass die grundlegende Forderung nach einem freilandaehnlichen Kammerklima in den getesteten Kammern nur bedingt erfuellt werden konnte. Dies traf insbesondere fuer Luft- und Bodentemperaturen, fuer die relative Luftfeuchtigkeit und die Strahlungsverhaeltnisse zu. Aufgrund der beobachteten Klimaeffekte sowie des Fehlens wesentlicher immissionsoekologischer Feuchtefaktoren lassen die Testpflanzen sowohl kurz- als auch langfristig Wuchs- und Symptomreaktionen erwarten, die nicht mit denen des Freilandes vergleichbar sind. Unter diesen Bedingungen ist nur der Vergleich von Kammer zu Kammer statthaft. Die Durchfuehrung spezieller Kurzzeitexperimente (zB waehrend einer Vegetationsperiode) mit den Behandlungsvarianten Rein- und Umgebungsluft scheiterte an der relativ geringen Luftschadstoffbelastung des Projektstandortes. Gegen Langzeit-Experimente sprachen die nicht vergleichbaren Wachstumgsbedingungen innerhalb und ausserhalb der Kammern. Um uebertragbare Kammerergebnisse zu erzielen, muessten kostenintensive Optimierungsmassnahmen vorgenommen werden. Vorrangige Verbesserungen waeren im Bereich der Lichtbedingungen und der Temperaturreduktion angezeigt. Die Steuerungsgruppe kam zu dem abschliessenden Ergebnis, dass das Projekt im Vorprojektstadium abgeschlossen und am Standort 'Muenstertal' nicht in ein langfristiges Abschlussprojekt uebergeleitet werden sollte.

1 2 3 4 552 53 54