API src

Found 378 results.

CoMet (Carbon Dioxide and Methane) Mission

Das Projekt "CoMet (Carbon Dioxide and Methane) Mission" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Abteilung Lidar durchgeführt. Confronting Climate Change is one of the paramount societal challenges of our time. The main cause for global warming is the increase of anthropogenic greenhouse gases in the Earth's atmosphere. Together, carbon dioxide and methane, being the two most important greenhouse gases, globally contribute to about 81% of the anthropogenic radiative forcing. However, there are still significant deficits in the knowledge about the budgets of these two major greenhouse gases such that the ability to accurately predict our future climate remains substantially compromised. Different feedback mechanisms which are insufficiently understood have significant impact on the quality of climate projections. In order to accurately predict future climate of our planet and support observing emission targets in the framework of international agreements, the investigation of sources and sinks of the greenhouse gases and their feedback mechanisms is indispensable. In the past years, inverse modelling has emerged as a key method for obtaining quantitative information on the sources and sinks of the greenhouse gases. However, this technique requires the availability of sufficient amounts of precise and independent data on various spatial scales. Therefore, observing the atmospheric concentrations of the greenhouse gases is of significant importance for this purpose. In contrast to point measurements, airborne instruments are able to provide regional-scale data of greenhouse gases which are urgently required, though currently lacking. Providing such data from remote sensing instruments supported by the best currently available in-situ sensors, and additionally comparing the results of the greenhouse gas columns retrieved from aircraft to the network of ground-based stations is the mission goal of the HALO CoMet campaign. The overarching objective of HALO CoMet is to improve our understanding and to better quantify the carbon dioxide and methane cycles. Through analysing the CoMet data, scientists will accumulate new knowledge on the global distribution and temporal variation of the greenhouse gases. These findings will help to better understand the global carbon cycle and its influence on climate. These new findings will be utilized for predicting future climate change and assessing its impact. Within the frame of CoMet and due to the operational possibilities we will concentrate on small to sub-continental scales. This does not only allow to identify local emission sources of greenhouse gases, but also opens up the opportunity to use important remote sensing and in-situ data information for the inverse modelling approach for regional budgeting. The project also aims at developing new methodologies for greenhouse gas measurements, and promotes technological developments necessary for future Earth-observing satellites.

Austauschuntersuchungen in der Kieler Bucht

Das Projekt "Austauschuntersuchungen in der Kieler Bucht" wird vom Umweltbundesamt gefördert und von Universität Kiel, Institut für Meereskunde durchgeführt.

Was bestimmt die Konzentration von Aerosolpartikeln in der marinen Grenzschicht über dem atlantischen Ozean?

Das Projekt "Was bestimmt die Konzentration von Aerosolpartikeln in der marinen Grenzschicht über dem atlantischen Ozean?" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. Aerosolpartikel spielen eine wichtige Rolle für das regionale und globale Klima. Weltweit gibt es deshalb zahlreiche Messstationen, von denen allerdings nur ein kleiner Teil die marine Grenzschicht (MBL) erfasst, obwohl etwa 70% der Erdoberfläche mit Wasser bedeckt sind. Dieses Projekt soll dazu beitragen, das Wissen über Quellen und Austauschprozesse von Aerosolpartikeln in der MBL mithilfe einer Messkampagne über den Azoren im Nordostatlantik, welche nahezu unbeeinflusst von lokalen Quellen sind, zu verbessern.Die zentrale Hypothese ist, dass sowohl Ferntransport aus Nordamerika, als auch Partikelneubildung in der freien Troposphäre (FT) und an Wolkenrändern mit anschließendem Vertikaltransport wesentlich zur Anzahlkonzentration der Aerosolpartikel in der MBL beitragen. Das Verständnis der Partikelquellen und Senken zusammen mit dem vertikalen Partikelaustausch zwischen MBL und FT ist daher eine Grundvoraussetzung für die Vorhersagbarkeit der Partikelanzahlkonzentration in den unteren Schichten der MBL wo sie z.B. für die Wolkenbildung von großer Bedeutung ist. Diese Prozesse sind bisher über dem offenen Ozean nur unzureichend quantifiziert. Zur Verifizierung der Hypothese sollen vertikale Austauschprozesse und Partikelquellen über den Azoren mit hoher räumlicher Auflösung untersucht werden. Dazu werden mit einer am TROPOS entwickelten hubschraubergetragenen Messplattform Partikelanzahlkonzentration und Vertikalwind mit einer zeitlichen Auflösung gemessen, die erstmalig eine direkte Bestimmung des vertikalen turbulenten Partikelflusses in verschiedenen Höhen ermöglicht. Die hierfür notwendigen schnellen Partikelmessungen von mind. 10 Hz werden durch den Einsatz eines schnellen Partikelzählers ermöglicht, welcher am TROPOS im Rahmen eines abgeschlossenen DFG-Projektes entwickelt und erfolgreich eingesetzt wurde. Durch dieses Gerät ist es ebenfalls möglich zu prüfen, ob auch in dieser Region regelmäßig die Neubildung von Aerosolpartikeln an Wolkenrändern stattfindet, wie es an Passatwolken auf Skalen von wenigen Dekametern beobachtet wurde. Weiterhin werden Anzahlgrößenverteilungen von Aerosolpartikeln sowie Absorptionskoeffizienten bei drei Wellenlängen bestimmt. Damit sind Rückschlüsse auf die Herkunft der untersuchten Aerosolpartikel möglich.Da die Hubschrauberflüge zeitlich begrenzt sind und damit nur Momentaufnahmen darstellen, werden zusätzlich kontinuierliche Messungen der Partikelanzahlgrößenverteilung an zwei bodengebundenen Stationen installiert. Eine dieser Stationen ist wenige Meter über Meeresniveau gelegen, die andere auf 2200 m und somit in der FT. Damit wird auf der Basis kontinuierlicher Messungen über einen Zeitraum von einem Monat die Untersuchung der Austauschprozesse zwischen MBL und FT ermöglicht. Mit Hilfe der gewonnen Datensätze können Einflüsse globaler Klimaänderungen auf das lokale Klima und mögliche Rückkopplungseffekte über den Einfluss von Aerosol auf Wolken in dieser Region besser eingeordnet werden.

Kuestenprogramm der BfG - Transport und Austauschvorgaenge in Aestuarien

Das Projekt "Kuestenprogramm der BfG - Transport und Austauschvorgaenge in Aestuarien" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Gewässerkunde durchgeführt. Zweck und Ziel: Mit den Untersuchungen sollen in Aestuarien die Einfluesse der Gezeiten, der morphologischen Struktur und der Meteorologie (Wind) auf die Transport- und Vermischungsvorgaenge aufgezeigt werden, wobei eine qualitative und quantitative Erfassung lokaler hydrodynamischer Vorgaenge angestrebt wird. Besondere Aufmerksamkeit richtet sich hierbei auf die Laengsvermischung in den Rinnen und die Quervermischung mit den seitlich angrenzenden Flachwasserzonen. Die vorgesehenen Messungen, die in der Jade und im Weseraestuar erfolgen sollen, dienen der Gewinnung von Basisdaten fuer mathematische Modelle. Ausfuehrung: Meteorologische Daten werden in den Sommer- und Herbstmonaten in der Naehe des Leuchtturms Hoher Weg von einer auf Magnetband registrierenden Messeinrichtung erfasst. Temperatur- und Stroemungsmessungen erfolgen im umliegenden Aestuargebiet. Ergaenzend dazu werden kombinierte Quer- und Laengsprofile (Temperatur, Leitfaehigkeit und Sauerstoffgehalt) in Jade und Weser aufgenommen. Ergebnisse: Durch die Laengs- und Querprofilmessungen konnten ueber die zeitlich und oertlich in ihren Auswirkungen veraenderlichen Einflussgroessen, wie industrielle Waermeeinleitungen, Waermeaustausch mit der Atmosphaere sowie seeseitiger An- und Abtransport von Waerme, mannigfaltige Informationen gewonnen werden. Die langjaehrigen Messungen im Weser-Aestuar und in der Jade lieferten insbesondere Erkenntnisse ueber die Groessenordnung der einzelnen Transportvorgaenge.

Impuls/Waerme/Stofftransport zwischen Wasser und Atmosphaere

Das Projekt "Impuls/Waerme/Stofftransport zwischen Wasser und Atmosphaere" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. Messung der Stromdichten von Impuls, Waerme, Wasserdampf und Gasen durch die Phasengrenze Wasser-Luft in Abhaengigkeit von meteorologischen Parametern (Windgeschwindkeit, Feuchte usw.). Simulation der 'Air-Sea-Interaction' an einem ringfoermigen, abgeschlossenen Wind-Wasserkanal. Untersuchung mit Hilfe stabiler Isotope des Wassers, Kohlendioxid, Edelgasen. Massenspektrometrische Bestimmungsmethoden. Entwicklung von Temperatursonden fuer Grenzschichttemperatur. Untersuchung an anderen Modellfluessigkeiten statt Wasser; Untersuchung des Kapillarwellen-Einflusses.

Die gepackte Saeule in der aeroben Abwasserreinigung

Das Projekt "Die gepackte Saeule in der aeroben Abwasserreinigung" wird vom Umweltbundesamt gefördert und von Berliner Hochschule für Technik, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik durchgeführt. Zur Reinigung von Abwaessern mit hohen organischen Schadstoffkonzentrationen werden aerobe Hochlastreaktoren eingesetzt. Dabei wird die Leistungssteigerung mit unterschiedlichen Verfahrens- und Reaktortechniken erzielt. Alle Systeme haben gemeinsam, dass bei intensiver Durchmischung mit hoher Turbulenz durch Scherkraefte grosse Phasengrenzflaechen zwischen Substrat/Sauerstoff und Bakterien/Sauerstoff erzeugt werden. Dies verbessert sowohl den Sauerstofftransport als auch den Stoffuebergang. Nach diesen Prinzipien arbeitet auch der Umlaufreaktor mit gepackter Saeule, die aus speziell geformten Keramikteilen besteht. Modelluntersuchungen mit synthetischem Abwasser zeigen, dass dieser Reaktor die Abbauleistung bekannter Hochlastreaktoren erreicht, aber weniger Energie und keine beweglichen Teile benoetigt.

Austauschprozesse mit Totzonen und in langsam durchflossenen Gewaesserteilen

Das Projekt "Austauschprozesse mit Totzonen und in langsam durchflossenen Gewaesserteilen" wird vom Umweltbundesamt gefördert und von Forschungsverbund Berlin, Leibniz-Institut für Gewässerökologie und Binnenfischerei durchgeführt. Intensive Austauschprozesse mit dem Sediment finden auch in der Spree statt. Die woechentlichen Messbilanzbetrachtungen im Experimental-Altarm Freienbrink zeigen wechselnde Verluste und Gewinne an. Die 1995 wieder aufgenommenen Messungen der P-Konzentrationen beweisen, dass es sich dabei um Wechselwirkungen mit den Ablagerungen handelt. Gewinne und Verluste von ueber 10 Prozent TP erfaehrt das den Altarm durchfliessende Wasser innerhalb weniger Stunden Aufenthaltszeit. Langsam erfolgt dagegen die Umlagerung der rund 3000 Kubikmeter Mudde zu fliessgewaessertypischen Strukturen seit der Wiedereroeffnung des Altarmes 1992. Oekologisch sehr bedeutsam sind die Totzonen am Flussufer. Mit Hilfe von Tracerversuchen zwischen Spreewerder und Freienbrink und eines mathematischen Modells wurde ermittelt, dass die Totzonen eine durchschnittliche Breite zwischen 3 und 5 m besitzen. Durch die Totzonen wird der gesamte Wasserfluss verzoegert. Innerhalb der 'Durchschnitts- Totzone' haelt sich das Wasser rund 20 Minuten auf. Eine Verdoppelung der Aufenthaltszeit erfaehrt aber nur 2 Prozent des Wassers.

Wie Bodeneigenschaften Prozesse im Boden und an der Schnittstelle zwischen Boden und Atmosphäre beeinflussen - Eine Verknüpfung von Experimenten und Modellierung

Das Projekt "Wie Bodeneigenschaften Prozesse im Boden und an der Schnittstelle zwischen Boden und Atmosphäre beeinflussen - Eine Verknüpfung von Experimenten und Modellierung" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung durchgeführt. Es ist das primäre Ziel dieses Projektes, Prozesse an der Schnittstelle zwischen Boden und Atmosphäre und deren Einfluss auf die ungesättigte Bodenzone zu analysieren, sowie die Theorie derartigen nicht-isothermen, mehrphasen und mehrkomponenten Prozesse zu verbessern. Hierbei liegt der Hauptfokus auf dem Einfluss von Oberflächenrauheiten und Heterogenitäten auf das Austauschverhalten. Das übergeordnete Ziel ist es, neue und validierte physikalische und mathematische Modelle zu entwickeln. Diese Modelle sollen mithilfe von umfassenden experimentellen und numerischen Analysen auf verschiedenen örtlichen und zeitlichen Skalen erstellt werden. Das Projekt hat vier Hauptziele:1. Hochauflösende Laborexperimente sollen auf verschiedenen Skalen (0,25-8m) durchgeführt werden, um neuartige Datenreihen zu erstellen, die aktuell nicht verfügbar sind. Dazu werden Experimente in einem Boden-Atmosphären Windkanal, dem Einzigen seiner Art, durchgeführt in denen die Eigenschaften der freien Strömung, der Bodenoberfläche und des Bodens variiert werden.2. Auf der Intermediate Skala werden Freifeldversuche unter dynamischen Randbedingungen durchgeführt um (i) die theoretischen Beschreibungen unter dem Einfluss von natürliche Heterogenitäten (z.B. Aggregaten) zu testen (ii) den Einfluss von tagesgang-abhängigen Triebkräften (z.B. Windgeschwindigkeit) zu analysieren und (iiI) zu untersuchen wie die Heterogenitäten am besten auf unterschiedlichen Skalen integriert werden können und wie diese die Austauschprozesse beeinflussen.3. Mit Hilfe dieser experimentellen Daten werden detaillierte numerische Simulationen auf der Darcy Skala (wenn notwendig mit der Forchheimer Erweiterung) benutzt, um zu analysieren ob es notwendig ist, die freie Strömung und deren Grenzschichteffekte für Masse, Impuls und Energie in aktuelle Modelle zu integrieren.4. Die Theorie für Massen-, Impuls- und Energieaustauschprozesse zwischen der Atmosphäre und dem Boden soll verbessert werden. Das beinhaltet Verdunstung, Kondensation, Strahlung und Transport von Komponenten, wie flüchtigen Komponenten in der Gasphase (VOC) oder stabilen Wasserisotopen, unter der Berücksichtigung unterschiedlicher Materialgrenzflächen. In einem zweiten Schritt sollen vereinfachte Modelle mit effektiven Parametern, basierend auf der integralen Betrachtung von Strömungs- und Transportprozessen, entwickelt, erweitert und getestet werden. Diese Modelle sollen die Effekte auf den unterschiedlichen zeitlichen und räumlichen Skalen wiedergeben.

Bio-optische Eigenschaften als Echtzeittracer für die Transformation des organischem Materials in der SML (SP 1.3)

Das Projekt "Bio-optische Eigenschaften als Echtzeittracer für die Transformation des organischem Materials in der SML (SP 1.3)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum hereon GmbH durchgeführt. Die Sea-Surface Microlayer (SML) als dünne Grenzschicht trennt Hydrosphäre und Atmosphäre. Häufig sind die Konzentrationen bestimmter Verbindungen in der SML höher, entweder durch physikalische Konzentration aus dem darunter liegenden Wasser, durch Produktion in der SML oder durch atmosphärische Ablagerungen. Ein bekannter Aspekt ist die durchweg höhere Konzentration von chromophoren gelösten organischen Stoffen (CDOM) in der SML im Vergleich zum darunter liegenden Wasser. Kürzlich haben wir gezeigt, dass die inhärenten optischen Eigenschaften (IOP) â€Ì d.h. die Lichtstreu- und Absorptionseigenschaften von Wasser und seinen Bestandteilen â€Ì der SML genutzt werden können Komponenten in der SML zu charakterisieren und nützliche Informationen für den Strahlungstransfer und für Fernerkundungsstudien zu liefern. Darüber hinaus war unsere frühere Forschung zu optischen Eigenschaften in der SML unsere Motivation hier vorzuschlagen, IOPs und apparente optischen Eigenschaften (AOPs) â€Ì abgeleitet aus spektralradiometrischen Messungen des Lichtfeldes â€Ì sowie die Fluoreszenz zur Charakterisierung von organischen Stoffen (OM) und deren Transformation für die Echtzeitbewertung der SML als biologischen und chemischen Lebensraum zu nutzen. Hiermit können wir in außergewöhnlicher Weise die Kurzzeitdynamik relevanter biologischer und chemischer Treiber in der SML untersuchen.

Schwebstoff-Tracer-Untersuchungen

Das Projekt "Schwebstoff-Tracer-Untersuchungen" wird vom Umweltbundesamt gefördert und von GKSS-Forschungszentrum Geesthacht, Standort Geesthacht, Institut für Chemie durchgeführt. Es sollen Transport- und Austauschvorgaenge an Schwebstoffen und Sedimenten durch Einsatz von Tracern untersucht werden. Die Untersuchungen sollen sowohl im Modell als auch in Feldversuchen durchgefuehrt werden. Eingesetzt werden sollen geeignete Radiotracer und aktivierbare Tracer in Form von Metalloxiden, Silikaten und organischen Verbindungen.

1 2 3 4 536 37 38