API src

Found 25 results.

Related terms

Boden

Als die alten Rieselfeldstrukturen zur Vorbereitung der Aufforstung eingeebnet wurden, vermischten sich die schadstoffbelasteten Klärschlammschichten mit dem anstehenden Mineralboden. Bei Bodenuntersuchungen Ende der 1990er Jahre wurden großflächig hohe Konzentrationen an verschiedenen organischen und anorganischen Schadstoffen, darunter auch verschiedene Schwermetalle, festgestellt. Vergleichbar hohe Werte werden sonst nur auf intensiv genutzten Industriestandorten gemessen. Die Schwermetalle befanden sich überwiegend im Oberboden. So entstand für die Rieselfelder um Hobrechtsfelde die Idee, den im Rahmen von Großbaumaßnahmen im Norden Berlins anfallenden Mergel in den Boden einzuarbeiten. 1996 startete das fortan sogenannte „Bucher Verfahren“ und auf mehr als 120 Hektar wurde so das Schadstoffbindungsvermögen verbessert. Es konnten verschiedene Ziele erreicht werden: Schwermetalle wurden im Boden gebunden und ihre Verlagerung im Boden durch die Zuführung von Kalk verhindert. Außerdem wurde die Nährstoffspeicherfähigkeit langfristig erhöht und die Wasserspeicherkapazität durch Erhöhung des Tonmineralanteils im Boden erhöht. Durch die Anwendung des Bucher Verfahrens wurden die Bodenverhältnisse und die Wasserverfügbarkeit soweit verbessert, dass auch die Pflanzung anspruchsvollerer Gehölze möglich war. Diese neue Vegetationsvielfalt begünstigte auch eine rasche Wiederbesiedelung durch die typische Bodenfauna aus umliegenden Flächen. Darüber hinaus entstand neuer Lebensraum für eine Vielzahl an Vögeln und Säugetieren. Problematisch hingegen sind nicht heimische sowie ausbreitungsstarke Arten wie beispielsweise der Eschenahorn aus Nordamerika, die auf den überlehmten Flächen besonders gut wachsen und oftmals andere Arten und offene Lebensräume verdrängen. Die positiven und begünstigenden Wirkungen werden bislang nur auf jenen Flächen erreicht, die mit dem Bucher Verfahren saniert wurden. Auf den unbearbeiteten Flächen ist die Situation auch heute noch nahezu unverändert. Flächen mit hoher Schadstoffkonzentrationen führen weiterhin zur Auswaschung von Schwermetallen ins Grundwasser und die Aufnahme von Schadstoffen durch Pflanzen.

Modellierung und Kartierung atmosphärischer Stoffeinträge und kritischer Belastungs-schwellen zur kontinuierlichen Bewertung der ökosystem-spezifischen Gefährdung der Biodiversität in Deutschland - PINETI (Pollutant INput and EcosysTem Impact). Teil 2

Das Teilprojekt dient der Weiterentwicklung der Modellierung der nassen ⁠ Deposition ⁠ im Chemie Transport Model REM-Calgrid (RCG). Die operationelle Version von RCG berücksichtigt bei der Berechnung der nassen Deposition nur die Auswaschung von Schadstoffen unterhalb der Wolke. Bereits innerhalb des Vorgängerprojektes MAPESI wurde die Modellierung durch die Einführung der Auswaschung innerhalb der Wolke weiterentwickelt. Die Modellentwicklungen wurden innerhalb des PINETI Projektes daher zunächst im RCG fortgeführt. Veröffentlicht in Texte | 61/2014.

Mittlere jährliche Sickerwasserrate aus dem Boden in Deutschland (WMS)

Web Map Service (WMS) zur mittleren jährlichen Sickerwasserrate aus dem Boden in Deutschland (SWR1000). Die mittlere jährliche Sickerwasserrate aus dem Boden ist als die Sickerwassermenge definiert, die den Boden unter Berücksichtigung des kapillaren Aufstiegs im langjährigen Mittel abwärts verlässt. Sie wird in mm/a angegeben. Niederschlagswasser, das nach Abzug des Oberflächenabflusses in den Boden infiltriert, steht zuerst für die Wasserversorgung der Vegetation zur Verfügung. Überschreitet der Wassergehalt im Wurzelraum die Feldkapazität, bewegt sich das infiltrierte Wasser der Schwerkraft folgend nach unten und verlässt den Wurzelraum. Dieses Sickerwasser wird sich zum Grundwasserspiegel bewegen und zur Grundwasserneubildung beitragen oder zum Teil auch lateral als Zwischenabfluss abfliessen. Neben der quantitativen Bedeutung der Sickerwasserrate aus dem Boden für die Grundwasserneubildung, und damit für die Trinkwasserversorgung aus dem Grundwasser, bestimmt das Sickerwasser in entscheidender Weise auch die Verlagerung und Auswaschung von Nähr- und Schadstoffen aus dem Boden ins Grundwasser und in Oberflächengewässer. Insbesondere für qualitative Aspekte des Gewässerschutzes ist die Sickerwasserrate deshalb eine entscheidende Eingangsgröße. Die Sickerwasserrate aus dem Boden ergibt sich aus der Differenz von Niederschlag minus Verdunstung und Oberflächenabfluss.

Mittlere jährliche Sickerwasserrate aus dem Boden in Deutschland

Die mittlere jährliche Sickerwasserrate aus dem Boden ist als die Sickerwassermenge definiert, die den Boden unter Berücksichtigung des kapillaren Aufstiegs im langjährigen Mittel abwärts verlässt. Sie wird in mm/a angegeben. Niederschlagswasser, das nach Abzug des Oberflächenabflusses in den Boden infiltriert, steht zuerst für die Wasserversorgung der Vegetation zur Verfügung. Überschreitet der Wassergehalt im Wurzelraum die Feldkapazität, bewegt sich das infiltrierte Wasser der Schwerkraft folgend nach unten und verlässt den Wurzelraum. Dieses Sickerwasser wird sich zum Grundwasserspiegel bewegen und zur Grundwasserneubildung beitragen oder zum Teil auch lateral als Zwischenabfluss abfliessen. Neben der quantitativen Bedeutung der Sickerwasserrate aus dem Boden für die Grundwasserneubildung, und damit für die Trinkwasserversorgung aus dem Grundwasser, bestimmt das Sickerwasser in entscheidender Weise auch die Verlagerung und Auswaschung von Nähr- und Schadstoffen aus dem Boden ins Grundwasser und in Oberflächengewässer. Insbesondere für qualitative Aspekte des Gewässerschutzes ist die Sickerwasserrate deshalb eine entscheidende Eingangsgröße. Die Sickerwasserrate aus dem Boden ergibt sich aus der Differenz von Niederschlag minus Verdunstung und Oberflächenabfluss und wurde mit dem neuen TUB-BGR-Verfahren (WESSOLEK et al., 2003) landnutzungsabhängig (Acker, Grünland, Wald) berechnet. Die Version 1.0 mit einer Rasterweite von 250 Metern basiert auf den topographischen Grundlagen des Digitalen Landschaftsmodells 1:1.000.000 (DLM 1000) des Bundesamtes für Kartographie und Geodäsie.

Modellierung und Kartierung atmosphärischer Stoffeinträge und kritischer Belastungsschwellen zur kontinuierlichen Bewertung der ökosystemspezifischen Gefährdung der Biodiversität in Deutschland - PINETI (Pollutant INput and EcosysTem Impact)

Das Teilprojekt dient der Weiterentwicklung der Modellierung der nassen Deposition im Chemie Transport Model REM-Calgrid (RCG). Die operationelle Version von RCG berücksichtigt bei der Berechnung der nassen Deposition nur die Auswaschung von Schadstoffen unterhalb der Wolke. Bereits innerhalb des Vorgängerprojektes MAPESI wurde die Modellierung durch die Einführung der Auswaschung innerhalb der Wolke weiterentwickelt. Die Modellentwicklungen wurden innerhalb des PINETI Projektes daher zunächst im RCG fortgeführt.<BR>Quelle: www.umweltbundesamt.de<BR>

Modellierung und Kartierung atmosphärischer Stoffeinträge und kritischer Belastungsschwellen zur kontinuierlichen Bewertung der ökosystemspezifischen Gefährdung der Biodiversität in Deutschland - PINETI (Pollutant INput and EcosysTem Impact)

Das Teilprojekt dient der Weiterentwicklung der Modellierung der nassen Deposition im Chemie Transport Model REM-Calgrid (RCG). Die operationelle Version von RCG berücksichtigt bei der Berechnung der nassen Deposition nur die Auswaschung von Schadstoffen unterhalb der Wolke. Bereits innerhalb des Vorgängerprojektes MAPESI wurde die Modellierung durch die Einführung der Auswaschung innerhalb der Wolke weiterentwickelt. Die Modellentwicklungen wurden innerhalb des PINETI Projektes daher zunächst im RCG fortgeführt.<BR>Quelle: www.umweltbundesamt.de<BR>

Schadstoffe in Böden

Ein bedeutendes Themenfeld des Bodenschutzes ist der Umgang mit Schadstoffen in Böden. Schadstoffe sind giftig (akut toxisch, chronisch toxisch und/oder krebserregend) und können auf verschiedene Weise schädlich für die Umwelt wirken. So können sie neben der direkten Schädigung der Bodenlebewesen in Gewässer gelangen und die dortigen Lebewesen schädigen oder in das für die Trinkwassergewinnung verwendete Rohwasser gelangen. Sie können direkt auf Menschen einwirken über die Luft (gasförmig oder staubgebunden) oder über die orale Aufnahme z.B. durch das spielende Kind. Indirekt können Schadstoffe auch von Pflanzen aufgenommen und in den verzehrfähigen Pflanzenteilen angereichert werden oder zu einer Belastung von Futtermitteln führen, die wiederum eine Belastung tierischer Lebensmittel zur Folge haben, siehe LANUV-Info 13 über "Ursachen – Wirkungen – Bewertung – Handlungsempfehlungen". Mögliche Wirkungspfade einer Schadstoffbelastung im Boden, Abbildung: LANUV NRW In den Boden gelangen Schadstoffe auf unterschiedlichem Wege: Unfälle oder zurückliegende aus heutiger Sicht unsachgemäße industrielle/gewerbliche Praxis haben vielerorts zum Eintrag von bodengefährdenden Stoffen geführt. Schadstoffe aus der Luft kommen über Deposition (Staub, Regen) auf die Bodenoberfläche. Schadstoffe in Gewässern und deren Sedimenten gelangen bei Hochwasserereignissen auf Überschwemmungsflächen. Schadstoffe in Klärschlämmen, Komposten, Dünge- und Pflanzenschutzmitteln werden in landwirtschaftlich genutzte Böden eingetragen. Natürliche Gesteine mit hohen Schwermetallgehalten können in Einzelfällen direkt an der Erdoberfläche vorkommen und dort flächenhaft schädliche Bodenveränderungen bedingen. Schadstoffe und deren Herkunft Giftige Wirkungen sind für eine Vielzahl von Stoffen bekannt. Organische Schadstoffe Persistente organische Schadstoffe („Persistent Organic Pollutants“ = POPs) sind aufgrund ihrer Langlebigkeit, Giftigkeit und ihrer weltweiten Verbreitung sehr umweltrelevant. POPs sind chemische Verbindungen, die in der Umwelt nur langsam abgebaut werden. Sie verbleiben nach ihrer Freisetzung in der Umwelt und reichern sich in der Nahrungskette an. Damit können sie ihre schädigende Wirkung auf Ökosysteme und Mensch langfristig entfalten. Einige POPs weisen eine hohe Toxizität (=Giftigkeit) auf. Da sie auch weiträumig transportiert werden, können sie selbst in entlegenen Gebieten zu einer Belastung führen. Zu den POPs gehören Chemikalien, die zum Zwecke einer bestimmten Anwendung hergestellt wurden (z. B. PCB) aber auch solche, die unbeabsichtigt bei Verbrennungs- oder anderen thermischen Prozessen entstehen (z. B. Dioxine und Furane).  Die wichtigsten Verbindungen sind: PAK (Polyzyclische Aromatische Kohlenwasserstoffe; insgesamt über 100 Verbindungen) stammen vor allem aus unvollständiger Verbrennung z.B. in Kraftwerken, Kokereien, im Verkehr aber auch beim Kaminfeuer. Außerdem kommen PAK in Stein- und Braunkohle vor. PCB (Polychlorierte Biphenyle) wie auch PCDD/PCDF (Dioxine und Furane) entstehen bei jeder nicht vollständigen Verbrennung in Gegenwart von Chlorverbindungen. Größte Quelle war noch in den 90er Jahren die Energiewirtschaft, deren Emission aber heutzutage vernachlässigbar ist, da Filteranlagen für die Einhaltung der Emissionsgrenzwerte sorgen. PFAS (per- und polyfluorierte Alkylsubstanzen; mehr als 1.000 Verbindungen) sind künstlich hergestellte Substanzen, die seit den 70er Jahren in einer Vielzahl von Produkten v.a. zur Oberflächenbeschichtung (Dächer, Textilien, Verpackungen) sowie als Schaummittel für Feuerlöschschäume eingesetzt wurden. Weitergehende Informatioen erhalten Sie unter Gefahrstoff PFAS . Arzneimittel können auch in Böden gelangen und im Boden unerwünschte Wirkungen wie z.B. die Bildung von Resistenzen entfalten. Zum Eintrag von Arzneimitteln und deren Verhalten und Verbleib in der Umwelt ist 2007 der LANUV-Fachbericht 2 erschienen. Anorganische Schadstoffe Unter Anorganischen Schadstoffen versteht man vor allem Schwermetalle wie Arsen, Cadmium, Blei, Chrom, Kupfer, Nickel, Quecksilber, Thallium, Zink. Sie sind natürliche Bestandteile der Erdkruste, werden aber auch durch Aktivitäten des Menschen in die Umwelt eingetragen. So werden Metalle insbesondere bei der Verbrennung fossiler Brennstoffe sowie bei ihrer Herstellung (Verhüttung) und Verarbeitung in großen Mengen freigesetzt. Weitere wichtige Emissionsquellen sind Müllverbrennungsanlagen, die Zementindustrie, die Glasindustrie und der Kraftfahrzeugverkehr. Metalle sind in der Umwelt langlebig und werden ständig weiterverbreitet. Sie wirken in bestimmten Konzentrationen toxisch (= giftig) und können die Bodenfunktionen und die Qualität der darauf wachsenden Pflanzen beeinträchtigen. So können sie sich auch in Nahrungs- und Futterpflanzen anreichern und gelangen damit in die Nahrung des Menschen. Bewertung Von schadstoffbelasteten Böden können Wirkungen auf andere Umweltmedien und die Gesundheit von Menschen, Tieren und Pflanzen ausgehen. Die Bewertung einer gemessenen Schadstoffkonzentration im Boden hängt von der Nutzung der Böden und dem damit verbundenen Aufnahmepfad ab. Es werden folgende Aufnahmepfade unterschieden: der Direktpfad (Boden zu Mensch), z.B. direkter Bodenkontakt von spielenden Kindern, der Pflanzenpfad (Boden zu Nutzpflanze), z.B. bei der Erzeugung pflanzlicher Lebensmittel oder von Tierfutter auf belasteten Böden, der Grundwasserpfad (Boden zu Grundwasser), durch Auswaschung von Schadstoffen aus dem Boden. Für alle drei Pfade und für eine Vielzahl von Schadstoffen formuliert die BBodSchV Beurteilungswerte (Vorsorgewerte, Prüfwerte, Maßnahmenwerte) bei deren Überschreitung die Gefahr der Entstehung einer schädlichen Bodenveränderung nicht mehr als ausgeräumt gelten kann. Vorsorgewerte zeigen an, ab welchen Bodenkonzentrationen die Besorgnis besteht, dass bei fortgesetzten Stoffeinträgen zukünftig Bodenkonzentrationen erreicht werden könnten, die nicht mehr unbedenklich sind. Werden Prüfwerte überschritten, ist mit hinreichender Wahrscheinlichkeit von einer Gefahr für das jeweilige Schutzgut auszugehen. Es sind weitere Untersuchungen erforderlich, um die Gefahren eindeutig festzustellen (und Maßnahmen zu ergreifen) oder auszuräumen (Detailuntersuchung). Prüfwerte sollen einen ausreichenden Abstand zu Vorsorgewerten (bzw. Hintergrundwerten) und einen eindeutigen Gefahrenbezug aufweisen. Die Überschreitung von Maßnahmenwerten „überspringt“ alle weiteren Prüfschritte und es sind unmittelbar Maßnahmen erforderlich. Prüf- und Maßnahmenwerte werden nach einheitlichen Ableitungsmethoden mit Bezug zur Toxikologie eines Stoffes festgelegt. Ob überhaupt gegenüber dem „Normalzustand“ erhöhte Werte vorliegen, kann mit Hilfe der statistisch abgeleiteten Hintergrundwerte überprüft werden. In der Detailuntersuchung werden neben der Abgrenzung der Belastung auch weitere Parameter berücksichtigt. So kann die Mobilität von Schadstoffen im Boden sehr unterschiedlich sein (z.B. sind Cadmium, Blei und Zink bei hohen pH-Werten fast immobil), was insbesondere für die Aufnahme durch Pflanzen relevant ist. Die Resorptionsverfügbarkeit eines Schadstoffes (Wie viel des Schadstoffes wird bei oraler Aufnahme im Verdauungstrakt überhaupt vom Körper aufgenommen?) ist bei der Betrachtung des Pfades Boden zu Mensch (Direktpfad) von Bedeutung. Eine umfassende Übersicht über die in der Detailuntersuchung abzuprüfenden Expositionsbedingungen gibt die entsprechende LABO-Arbeitshilfe . Maßnahmen Liegen in einem Boden Schadstoffkonzentrationen vor, die auch nach der Detailuntersuchung negative Wirkungen auf Bodenfunktionen erwarten lassen, liegt bodenschutzrechtlich eine "schädliche Bodenveränderung" vor. Welches die dabei relevanten Wirkungen und Gefahren sind und welches wirksame Maßnahmen zur Gefahrenabwehr sind, ist im Einzelfall hängt vor allem von der Bodennutzung ab. Auf Spielflächen (Pfad Boden > Mensch) sind vorrangig Maßnahmen zur Verringerung des direkten Bodenkontaktes von Kleinkindern erforderlich, wie z.B. Begrünung oder Abdeckung vegetationsfreier Flächen.  Oft wird hier aber bei Prüfwertüberschreitungen unmittelbar ein Bodenaustausch vorgenommen. Auf Industrieflächen (Pfad Boden > Mensch) kommen als Maßnahmen auch ein Betretungsverbot oder die Begrünung zur Verhinderung von Verwehungen in Betracht. In Nutzgärten (Pfad Boden > Pflanze) sind vor allem Maßnahmen zur Verringerung des Schadstoffüberganges vom Boden in angebaute Nahrungspflanzen wichtig, wie z.B. Kalkung zur Verringerung der Pflanzenverfügbarkeit von Schwermetallen oder Mulchabdeckung zur Vermeidung von Verschmutzungen. Oft kann aber auch die Reduktion der Nutzfläche als einfach zu vollziehende Maßnahme ausreichen. Auf Ackerflächen (Pfad Boden > Pflanze) kann eine Anpassung der Bewirtschaftung eine sinnvolle Maßnahme darstellen wie z.B. eine Kalkung zur Anhebung des pH-Wertes, der Verzicht auf stark anreichernde Pflanzenarten (Weizen bei Cadmium) oder eine verschmutzungsarme Futterwerbung. Hierzu wurden mit dem LUA-Merkblatt 55 Handlungsempfehlungen zu Maßnahmen der Gefahrenabwehr bei schädlichen stofflichen Bodenveränderungen in der Landwirtschaft  veröffentlicht. Bei Gefährdung von Grundwasser (Pfad Boden à Grundwasser) kommen auch Einschließungsverfahren (Oberflächenabdichtung, Abdeckung, Versiegelung, vertikale Abdichtung), Immobilisierungsverfahren oder Bodenwäsche als Sicherungsmaßnahmen zum Einsatz. In der Regel werden aber sogennannte pump-and-treat Verfahren nötig, die das belastete Wasser fördern und über Filter abreinigen. Flächenhafte Belastungen erfordern großflächige Vorgaben, welche entweder durch Allgemeinverfügungen oder durch Bodenschutzgebietsverordnungen erlassen werden können.

19 Sonstiges >> (Erd-)Aufschüttungen

Zum Projekttyp gehören Dämme und Wälle sowie Halden. Zu den möglichen anlagebedingten Vorhabensbestandteilen gehören insbesondere die jeweiligen Schüttungskörper. Zu den möglichen baubedingten Vorhabensbestandteilen zählen u. a. Zufahrten, Baustraßen, Baustelle bzw. Baufeld, Materiallagerplätze, Maschinenabstellplätze, Baumaschinen und Baubetrieb, Baustellenverkehr und Baustellenbeleuchtung. Die betrieblichen Verfahrensabläufe bestehen bei Halden aus Transportfahrten und Schüttvorgängen. Ansonsten sind mit dem Projekttyp nur geringe betriebsbedingte Beeinträchtigungen verbunden, insbesondere sind hier durch Auswaschung hervorgerufene stoffliche Emissionen (Nähr- und Schadstoffe) möglich.

Bioenergieregion Ludwigsfelde, Machbarkeitsstudie Terra Preta (BioLu)

Das Projekt "Bioenergieregion Ludwigsfelde, Machbarkeitsstudie Terra Preta (BioLu)" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Ökologie, Fachgebiet Bodenkunde durchgeführt. Bioenergie- und Rohstoffproduktion auf landwirtschaftlichen Flächen erhöhen den Druck auf die verfügbaren Flächen. Neben der Steigerung der landwirtschaftlichen Produktivität ist daher auch die Wiedernutzbarmachung von degradierten und belasteten Flächen dringend geboten. Eine Erhöhung der Bodenfruchtbarkeit scheint durch die Erhöhung der Kohlenstoffvorräte im Boden realisierbar. So erhalten die unfruchtbaren Böden der humiden Tropen ein hohes Produktionspotential durch jahrhundertelange menschliche Zugabe von organischen Abfallstoffen. Aus Böden mit extrem niedriger Nährstoffspeicherkapazität und fehlenden Nährstoffvorräten entsteht so ein nachhaltig fruchtbarer Boden, die Terra Preta. Träger der Fruchtbarkeit dieser Böden ist vor allem der hohe Gehalt an organischer Substanz, der zu großen Teilen als Holzkohle vorliegt. In letzter Zeit wird die Einbringung von verkohlter Biomasse unter dem Begriff Biokohle als Bodenverbesserungsmittel häufig diskutiert. Da der in der Biomasse enthaltene Kohlenstoff im Konvertierungsprozess zu aromatischen Ringstrukturen umgebaut wird und so kaum mikrobiell abgebaut werden kann, dient die Einbringung der Biokohle in den Boden gleichzeitig der Kohlenstoffsequestrierung. Auch als Sorbent für Schadstoffe, mit ähnlichen Eigenschaften wie Aktivkohle, wird Biokohle zunehmend diskutiert. Für den Ausbau der Bioenergie in der Region Ludwigsfelde stellen sich zwei Probleme: (1) Die sandigen und nährstoffarmen Böden sind, ähnlich wie die tropischen Böden, von Natur aus wenig fruchtbar. (2) Große Areale der Region sind durch die ehemalige Rieselfeldwirtschaft schadstoffbelastet. In Teilbereichen besteht sogar die Gefahr der Schadstoffauswaschung ins Grundwasser. Biokohle-Einbringung könnte daher zu einer Steigerung der Produktivität der Böden der Region beitragen und zum anderen Schadstoffe in den Rieselfeldböden fixieren. Darüber hinaus kann Biokohle als langfristige C-Senke im Boden zur Reduktion des Anstiegs der CO2-Konzentrationen in der Atmosphäre beitragen. Zur Zeit wird an zwei Verfahren zur Herstellung von Biokohle intensiv geforscht: Pyrolyse und hydrothermale Carbonisierung (HTC). Die Eigenschaften der HTC-Kohlen unterscheiden sich stark von jenen der pyrogenen Kohlen. Im Rahmen des Projektes werden daher zunächst die Chancen und Risiken beider Technologien beleuchtet. Denn bei all den vielversprechenden Ergebnissen darf nicht außer Acht gelassen werden, dass die Einbringung von Biokohle auch negative Effekte haben kann, wie z.B. die potentielle Einbringung von (an-) organischen Schadstoffen oder die negative Beeinflussung von Bodenmikroorganismen. Durch Topfversuche werden die Potentiale der Kohlen für die Böden der Region ermittelt. Darauf aufbauend sollen Feldversuche mit verschiedenen Kohlen durchgeführt werden.

Neuartige Beschichtungstechnologie für Gummigranulat

Das Projekt "Neuartige Beschichtungstechnologie für Gummigranulat" wird vom Umweltbundesamt gefördert und von Mülsener Recycling und Handelsgesellschaft durchgeführt. Zielsetzung und Anlass des Vorhabens Projektzielstellung ist die Entwicklung einer langzeitstabilen, wasser- und gasdichten Ummantelung für Gummigranulatpartikel aus recycelten Altgummireifen, wodurch umweltschädliche Schadstoffauswaschungen aus dem Gummigranulat vermieden werden sollen. Anlass: Rückführung eines Abfallproduktes (Altreifen) in den Stoffkreislauf durch Entwicklung eines neuen Produkts (beschichtetes Gummigranulat als Einstreugranulat für Kunstrasensysteme). Fazit Mit der Realisierung des Entwicklungsprojektes ist eine dauerelastische, langzeitstabile, wasser- und gasdichte Ummantelung für Gummipartikel aus recyceltem Altgummi geschaffen worden, wodurch umweltschädliche Zinkauswaschungen aus dem Gummigranulat vermieden werden. Es wurde ein kostengünstiges, umwelt- und geruchsneutrales Einstreugranulat für Kunstrasensysteme mit gleichzeitig schwingungsdämpfenden und stoßabsorbierenden Eigenschaften entwickelt, welches nach Beendigung der Nutzungsdauer wieder zu 100% recycelt werden kann.

1 2 3