Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
About 40% of final energy consumption in Germany will take place in and around buildings. Heating, cooling, hot water and the operation of electric devices are doing the most important areas - in the future probably also increasingly electric vehicles. The Open Gateway Energy Management Alliance (OGEMA) is an open software platform for energy management in this area. This connects energy consumers and producers to the customer with control centers of energy supply and binds a display for user interaction to. Thus, end-users should be able to automatically observe the future variable price of electricity and energy consumption to times. All participating developers to turn their ideas for automated energy can be used more efficiently to implement in appropriate software.
Zur Erreichung der von der neuen Bundesregierung gesteckten Ausbauziele in der Windenergie ist die Erschließung einer Vielzahl neuer Flächen für Windparks in kurzer Zeit erforderlich. Grundlage für die Windparkplanung an einem neuen Standort ist die Abschätzung der zu erwartenden Energieerträge sowie die Auswahl geeigneter Windenergieanlagen. Derzeit ist die Ertragsabschätzung mit hohen Unsicherheiten behaftet. Zudem ist sie insbesondere aufgrund der aktuell erforderlichen, einjährigen Windmessung zeit- und kostenintensiv. Ziel des Projektes ist es deshalb, durch Verbesserungen entlang der gesamten Prozesskette qualitativ bessere Ertragsabschätzungen in kürzerer Zeit und zu deutlich geringeren Kosten zu ermöglichen. Für die Zielerreichung werden Verfahren entwickelt, die eine bessere Datengrundlage (z.B.Reanalysen, Rauhigkeitsdaten) für die Windbranche liefern. Darüber hinaus werden an verschiedenen Stellen innovative Verfahren aus dem Bereich der Data Science wie maschinelles Lernen oder Modellensembles verwendet, um eine genaue Abschätzung der Energieerträge in kürzerer Zeit zu ermöglichen. Das Zusammenführen der verschiedenen Verfahren und Daten zu einem Gesamtprozess ermöglicht neben der Qualitätssteigerung einen hohen Grad an Automatisierung von Ertragsgutachten. Letztendlich schafft das Projekt damit die Grundlage für eine Senkung der Projektrisiken für Planer und Projektierer. Darüber hinaus können die entwickelten Verfahren auch für genauere regionale Potenzialabschätzungen verwendet werden und so einen Beitrag zur besseren Planung des Windenergieausbaus leisten. Das Fraunhofer IEE koordiniert das Verbundprojekt. Wissenschaftlich fokussiert sich das Fraunhofer IEE im Rahmen ihrer Forschungsarbeiten auf die Entwicklung von Verfahren zur Detektion von Rauhigkeitsänderungen auf Basis von Erdbeobachtungsdaten und entwickelt zeitreihenabhängige Verlustmodelle für verbesserte Ertragsabschätzungen.
In Fortsetzung des diesbezueglichen Vorhabens wurden ein Motoren- und ein Heizungspruefstand installiert, eine umfangreiche Messtechnik zur Erfassung saemtlicher limitierter Schadstoffe im Abgas sowie einige Pruefmotoren fuer verschiedene Kraftstoffe beschafft. Die Automatisierung von Pruefprogrammen nach internationalen Standards ist in Arbeit. Inzwischen wurden auch Altoele/Altfette in die Untersuchungen einbezogen. Ziel ist eine kleintechnische Aufbereitungstechnik fuer dezentrale Anwendung. Im Rahmen dieses Vorhabens wurde auch das Potential der technischen Nutzung pflanzlicher Oele in Indonesien eingehend untersucht. Seit Mai 97 wird eine Kleinflotte von Fahrzeugen der Telekom mit im Fachgebiet hergestellten Altfettmethylester betrieben.
Zur Erreichung der von der neuen Bundesregierung gesteckten Ausbauziele in der Windenergie ist die Erschließung einer Vielzahl neuer Flächen für Windparks in kurzer Zeit erforderlich. Grundlage für die Windparkplanung an einem neuen Standort ist die Abschätzung der zu erwartenden Energieerträge sowie die Auswahl geeigneter Windenergieanlagen. Derzeit ist die Ertragsabschätzung mit hohen Unsicherheiten behaftet. Zudem ist sie insbesondere aufgrund der aktuell erforderlichen, einjährigen Windmessung zeit- und kostenintensiv. Ziel des Projektes ist es deshalb, durch Verbesserungen entlang der gesamten Prozesskette qualitativ bessere Ertragsabschätzungen in kürzerer Zeit und zu deutlich geringeren Kosten zu ermöglichen. Für die Zielerreichung werden Verfahren entwickelt, die eine bessere Datengrundlage (z.B.Reanalysen, Rauhigkeitsdaten) für die Windbranche liefern. Darüber hinaus werden an verschiedenen Stellen innovative Verfahren aus dem Bereich der Data Science wie maschinelles Lernen oder Modellensembles verwendet, um eine genaue Abschätzung der Energieerträge in kürzerer Zeit zu ermöglichen. Das Zusammenführen der verschiedenen Verfahren und Daten zu einem Gesamtprozess ermöglicht neben der Qualitätssteigerung einen hohen Grad an Automatisierung von Ertragsgutachten. Letztendlich schafft das Projekt damit die Grundlage für eine Senkung der Projektrisiken für Planer und Projektierer. Darüber hinaus können die entwickelten Verfahren auch für genauere regionale Potenzialabschätzungen verwendet werden und so einen Beitrag zur besseren Planung des Windenergieausbaus leisten. Die Universität Kassel fokussiert sich im Rahmen ihrer Forschungsarbeiten auf die Entwicklung von Verfahren zur Langzeitkorrektur von Kurzzeitwindmessungen mittels Methoden von künstlicher Intelligenz und die verbesserte Abschätzung der Designwindbedingungen.